
Step by step example for 2500P-ACP1 : Preventive Maintenance

Page 1 of 12

The purpose of this Application Note is to show a step by step implementation of an IEC61131-3 application to load

in a CTI 2500P-ACP1 advanced co-processor. This application will perform Preventive Maintenance calculation for

On/Off devices controlled by the CTI 2500® CPU.

INTRODUCTION

In our example, we will have a first motor AM001 with a running contact wired to X1 and a second motor AM102

with a running contact wired to X200. We want to get a Preventive Maintenance (PM) alarm for each motor when its

start/stop cycle count exceed 50000 or when its running hour count exceed 10000 hours. The alarm for AM001 will

be send to C10 and the alarm for AM102 will be send to C2000.

Device Running Contact PM alarm

AM001 X1 C10

AM102 X200 C2000

CTI Equipment IP address Sub Mask

PC with CTI Workbench 10.55.71.80 255.255.255.0

2500-Cx00 10.55.71.81 255.255.255.0

2500P-ACP1 10.55.71.82 255.255.255.0

CREATING THE ACP1 PROJECT IN CTI WORKBENCH

On your engineering PC, where FasTrak WorkShop and CTI Workbench are installed, we will create a new CTI

Workbench workspace (PM_workspace) where our project (PREV_MAINT) will be added.

Step Action Note

A-1 Open CTI Workbench From desktop shortcut

A-2 Select “File > New Project List…” From the CTI Workbench menu bar

A-3 Enter “PM_workspace” This creates your empty workspace or project list

A-4 Select “File > Add New Project…” From the CTI Workbench menu bar

A-5 Enter “PREV_MAINT” This creates your IEC 61131 project

A-6 Make sure “PREV_MAINT” is in bold
characters

This means it is the Startup project in your workspace

A-7 If it is not the case, right click on
“PREV_MAINT” and select “Set As Startup
Project”

From the Project context menu

There will be no change to the CPU Workshop program. C10

and C2000 can be used in CPU to trigger alarm on a

HMI/SCADA system.

The CTI CPU and ACP1 will be connected to
an Ethernet switch together with the PC
where CTI Workbench is installed.
A HMI/SCADA can connect too.

Step by step example for 2500P-ACP1 : Preventive Maintenance

Page 2 of 12

SPECIFYING YOUR ACP1 AS THE TARGET SYSTEM

Step Action Note

B-1 Select “Tools” then “CTI Product Options” From the CTI Workbench menu bar

B-2 Click on the “Auto-Detect” button CTI Product Type field should now read “2500P-ACP1”

B-3 Click on the “Configure” button if the IP
address is to be modified

Do not forget to adapt your PC IP address to the same
range

B-4 Click on the “Display Runtime Status” button This shows various information about the ACP1 status

Step by step example for 2500P-ACP1 : Preventive Maintenance

Page 3 of 12

SETTING THE COMMUNICATION PARAMETERS

Step Action Note

B-5 Right click on the “PREV_MAINT” program This shows the Project context menu

B-6 Select “Communication Parameters…” From the Project context menu

B-7 Select “T5 Runtime” in the top field From the field list

B-8 Enter “10.55.71.82:1100” in the other field This is the IP address of your ACP1 on port 1100

Step by step example for 2500P-ACP1 : Preventive Maintenance

Page 4 of 12

CREATING GLOBAL AND RETAIN VARIABLES AND INITIALIZE VARIABLE

ON ACP1 POWER UP

Let’s create some global variables and initialize a few variables when the ACP1 starts up.

Step Action Note

C-1 Double click on the pre-existing program
“pStartup” in the “Exception programs” folder
of your project

This opens the pStartup Program as it is pre-build by
CTI Workbench

C-2 Under the line
// add your code here

Add the following lines:
MAX_CYCLES := 50000; // Maximum number of Start/Stop or Open/Close cycles

MAX_HOURS_ON := 10000; // Maximum Running or Open hours

RESET_ALL := FALSE; // Reset counter for all devices

C-3 Right click on “Global variables” in the variable list on the right hand side of the screen and select “Edit
Variables as Text…” and paste the following text:

VAR

 RESET_ALL : BOOL ;

 (*$desc=Common reset bit to reset all PM data*)

 MAX_CYCLES : DINT ;

 (*$desc=Max number of On/Off cycles to trigger PM alarm*)

 MAX_HOURS_ON : DINT ;

 (*$desc=Max number of hours On to trigger PM alarm*)

END_VAR

C-4 Then right click on “RETAIN variables” in the variable list, on the right hand side of the screen and select
“Edit Variables as Text…” and paste the following text:

VAR

 AM001_ON : BOOL ;

 AM001_CYCLES : DINT ;

 (*$embed=<syb>*)

 (*$profile=STRATON*)

 (*$prop6=350*)

 AM001_HOURS_ON : DINT ;

 (*$embed=<syb>*)

 (*$profile=STRATON*)

 (*$prop6=350*)

 AM001_MAINT_ALM : BOOL ;

 (*$embed=<syb>*)

 (*$profile=STRATON*)

 AM102_ON : BOOL ;

 AM102_MAINT_ALM : BOOL ;

 (*$embed=<syb>*)

 (*$profile=STRATON*)

END_VAR

Step by step example for 2500P-ACP1 : Preventive Maintenance

Page 5 of 12

CREATING THE UDFB FOR THE GENERIC DEVICE PM DATA COMPUTATION

Step Action Note

D-1 Right click on the “Programs” folder This shows the Program context menu

D-2 Select “Insert New Program…” From the Program context menu

D-3 Enter “PM_UDFB” in the Name field
Enter “Preventive Maintenance” in the
Description field
Select “ST” for the Programming language
Select “UDFB” for the Execution style
Click OK
You can skip the Parameters window by
clicking OK again.

This creates an empty User Defined Function Block
program to be programmed in Structured Text where
you are going to write the code for the Preventive
Maintenance data calculation.

D-4 Double click on the “PM_UDFB” program This opens the program with the Structured Text
editor

This PM_UDFB is handling the logic for a generic On/Off device (it will then have to be instantiated for each real

device). Copy the following code in the Program window:

//===

// PM_UDFB (UDFB) : Preventive Mainteance for On/Off Devices

//

// Purpose : Count leading edge of a signal (e.g. motor contactor)

// to get the number of start/stop cycles and cumulates the time On

// Should either one of these 2 data :

// 1. the count (e.g. motor starts)

// 2. the timer (e.g. motor running hours)

// exceeds a limit, a Boolean is set for alarming

// A reset function resets both counter and timer

// therefore resetting the alarm bit

//

// Author : NAPA International France

//

// Version Date Note

// ======= =========== ===============

// 1.0 22 Aug 2014 Original version

//===

// DETECT RISING PULSE OF DEVICE FEEDBACK

R_DEVICE (DEVICE_ON);

// COUNT DEVICE FEEDBACK RISING PULSES UP TO MAX

CTU_DEVICE_CYCLES (R_DEVICE.Q, RESET_PM_DATA, DEVICE_MAX_CYCLES);

DEVICE_CYCLES := CTU_DEVICE_CYCLES.CV;

// CUMULATE DEVICE FEEDBACK TIME ON UP TO MAX

TMU_DEVICE (DEVICE_ON, TMU_DEVICE.Q, T#60s);

CTU_DEVICE_HOURS (TMU_DEVICE.Q, RESET_PM_DATA, DEVICE_MAX_HOURS_ON);

DEVICE_ON_HOURS := CTU_DEVICE_HOURS.CV;

// SET PREVENTIVE MAINTENANCE ALARM BIT ON THE FIRST LIMIT REACHED

DEVICE_MAINT_ALM := CTU_DEVICE_CYCLES.Q OR CTU_DEVICE_HOURS.Q;

//===

Then right click on “PM_UDFB” in the variable list, on the right hand side of the screen and select “Edit Variables as
Text…” and paste the following text:

VAR_INPUT

 DEVICE_ON : BOOL ;

 (*$desc=Device feedback to monitor*)

 (*$embed=<syb>*)

 RESET_PM_DATA : BOOL ;

 (*$desc=Counter/Timer reset*)

 (*$embed=<syb>*)

 DEVICE_MAX_CYCLES : DINT ;

 (*$desc=Maximum Off/On cycle count*)

 DEVICE_MAX_HOURS_ON : DINT ;

 (*$desc=Maximum hours On count*)

END_VAR

VAR_OUTPUT

 DEVICE_MAINT_ALM : BOOL ;

 (*$desc=Device preventive maintenance alarm bit*)

 (*$embed=<syb>*)

Step by step example for 2500P-ACP1 : Preventive Maintenance

Page 6 of 12

 DEVICE_CTR : DINT ;

 (*$desc=Current device Off/On cycle count*)

 (*$embed=<syb>*)

 (*$profile=STRATON*)

 (*$prop6=350*)

 DEVICE_ONHOURS : DINT ;

 (*$desc=Current device On cumulative hours*)

 (*$embed=<syb>*)

 (*$profile=STRATON*)

 (*$prop6=350*)

END_VAR

VAR

 CTU_DEVICE_CYCLES : CTU ;

 (*$desc=Up Counter*)

 TMU_DEVICE : TMU ;

 (*$desc=Up-Counting Stop Watch*)

 R_DEVICE : R_TRIG ;

 (*$desc=Rising Pulse Detection*)

 CTU_DEVICE_HOURS : CTU ;

 (*$desc=Up Counter*)

END_VAR

Now your PM_UDFB program is complete. You still need to create a main program to call one instance of this UDFB
for each On/Off device you need.

Step by step example for 2500P-ACP1 : Preventive Maintenance

Page 7 of 12

CREATING THE MAIN PROGRAM CALLING THE UDFB INSTANCES

Step Action Note

E-1 Right click on the “Programs” folder This shows the Program context menu

E-2 Select “Insert New Program…” From the Program context menu

E-3 Enter “Call_PM_UDFBs” in the Name field
Enter “For each device” in the Description field
Select “ST” for the Programming language
Select “Main” for the Execution style
Click OK
You can skip the Parameters window by clicking
OK again.

This creates a main program to be programmed in
Structured Text where the previous UDFB will be
instantiated for each On/Off device.

E-4 Double click on the “Call_PM_UDFBs” program This opens the program with the Structured Text
editor

This Call_PM_UDFBs is calling the previous UDFB for each generic On/Off device. Copy the following code in the
Program window:

// This program calls instances of PM_UDFB to compute PM data for each On/Off device

// You can use variable as input parameters

AM001_PM (AM001_ON, RESET_ALL, MAX_CYCLES, MAX_HOURS_ON);

AM001_CYCLES := AM001_PM.DEVICE_CYCLES;

AM001_HOURS_ON := AM001_PM.DEVICE_ON_HOURS;

AM001_MAINT_ALM := AM001_PM.DEVICE_MAINT_ALM;

// You can also use constant values as input parameters

AM102_PM (AM102_ON, RESET_ALL, 50000, 10000);

// You need not get all ouputs (count and timer) if you are just interested in alarming bit

AM102_MAINT_ALM := AM102_PM.DEVICE_MAINT_ALM;

Then right click on “Call_PM_UDFBs” in the variable list, on the right hand side of the screen and select “Edit
Variables as Text…” and paste the following text:

VAR

 AM001_PM : PM_UDFB ;

 AM102_PM : PM_UDFB ;

END_VAR

Now your Call_PM_UDFBs program is complete.

Step by step example for 2500P-ACP1 : Preventive Maintenance

Page 8 of 12

FIELD BUS CONFIGURATION: DATA EXCHANGE WITH THE CTI CPU

You now need to link a few project variables with the ACP1 cache to/from the CTI CPU. Follow these steps:

Step Action Note

F-1 Click on the “Fieldbus Configurations” folder This open the Fieldbus IO driver editor

F-2 Right click in the editor This calls the editor context menu

F-3 Select “Insert Configuration…”
then select “All”
then select “CTI 2500 Data Cache”

From the editor context menu

F-4 Right click on “CTI 2500 Data Cache” This calls the configuration context menu

F-5 Select “Insert Master/Port…” From the configuration context menu

F-6 Enter “10.55.71.81” in the PLC IP address field Enter the IP address of the CTI 2500 PLC CPU

F-7 Leave the other entries to their default values 5, LAN, not used

F-8 Click “OK” This create an entry : CTI 2500 IP =”10.55.71.81”

F-9 Right click on “CTI 2500 IP = “10.55.71.81”” This calls the master/port context menu

F-10 Select “Insert Slave/Data Block…” From the master/port context menu

F-11 Select “Common”, then “Discrete I/O (XY) [BOOL]”
then enter “1”
then select “Read From PLC”, then click “OK”

This creates a read entry starting at X1

F-12 Right click on “Discrete I/O (XY) [BOOL] (1)” This calls the slave/data context menu

F-13 Select “Insert Variables…” From the slave/data context menu

F-14 Click on the “…” button if the Edit Variable window
then scroll to select AM001_ON
then enter “0” in the Offset field, then click OK

This copies the value of X1 to AM001_ON variable.

F-15 Select again “Insert Variables…” From the slave/data context menu

F-16 Click on the “…” button if the Edit Variable window
then scroll to select AM102_ON
then enter “199” in the Offset field, then click OK

This copies the value of X200 to AM102_ON variable.
(1+199)

F-17 Select “Insert Slave/Data Block…” From the master/port context menu

F-18 Select “Common”, then “Control Relay (C) [BOOL]”
then enter “10”
then select “Write to PLC”, then click “OK”

This creates a write entry starting at C10

F-19 Right click on “Control Relay (C) [BOOL] (10)” This calls the slave/data context menu

F-20 Select “Insert Variables…” From the slave/data context menu

F-21 Click on the “…” button if the Edit Variable window
then scroll to select AM001_MAINT_ALM
then enter “0” in the Offset field, then click OK

This copies the value of AM001_MAINT_ALM variable to
C10.

F-22 Select “Common”, then “Control Relay (C) [BOOL]”
then enter “2000”
then select “Write to PLC”, then click “OK”

This creates a write entry starting at C2000

F-23 Right click on “Control Relay (C) [BOOL] (2000)” This calls the slave/data context menu

F-24 Select “Insert Variables…” From the slave/data context menu

F-25 Click on the “…” button if the Edit Variable window
then scroll to select AM102_MAINT_ALM
then enter “0” in the Offset field, then click OK

This copies the value of AM102_MAINT_ALM variable to
C2000.

Step by step example for 2500P-ACP1 : Preventive Maintenance

Page 9 of 12

COMPILING AND LOADING

You are now ready to compile and load the project to the target ACP1:

Step Action Note

G-1 Click on the “Build Startup Project” icon in
the menu bar

This compile your project

G-2 Click on the “On Line” icon in the menu bar

This will connect CTI Workbench to the ACP1

G-3 Click on the “Download changes” icon in
the menu bar

This will load your project in the ACP1 memory

G-4 If the ACP1 status shows “STOP” or “No

application”,
Then click on the “Restart” icon in the
menu bar
and answer “Cold Start” to the prompt

This will restart the ACP1 with the new project

NOTE: Once successfully compiled any program in your project can be translated from ST to LD or FBD if you are
mode familiar with these languages.

Step by step example for 2500P-ACP1 : Preventive Maintenance

Page 10 of 12

Now you can monitor the behavior of your programs with CTI Workbench in Online mode.

You can use FasTrak WorkShop® and create a Data Window to modify X1 and X200 and see what happens to C10
and C2000.

Step by step example for 2500P-ACP1 : Preventive Maintenance

Page 11 of 12

ACP1 INTERNAL GRAPHICS

Suppose you don’t have a HMI/SCADA system to get the Preventive Maintenance alarms (C10 and C2000). You can
create a special Graphic with CTI Workbench and load it in the ACP1. This will allow some simple, local monitoring.

Step Action Note

H-1 Right click on the “Programs” folder This shows the Program context menu

H-2 Select “Insert New Item…” From the Program context menu

H-3 Select “Graphics” in the “Available Items”
column
Then click OK
Enter “PM_VIEW” in the Name field
Enter “Preventive Maintenance” in the
Description field
Then click OK

This will create a new Graphic PM_VIEW in your
project

H-4 Double click on the “PM_VIEW” graphic This will open your empty graphic in the Graphic
editor of CTI Workbench

H-5 Drag and drop graphical item “Grey Round
Switch” from the list on the right hand side
under “Switches” to your graphic

This will add a switch (to show the device On
feedback)

H-6 Double click on this switch item in your graphic This will display its Graphic Item Properties

H-7 Double click on the “Variable symbol” This will call the CTI Workbench variable browser

H-8 Select “AM001_ON” from the list This will attach the switch to AM001 On feedback

H-9 Drag and drop graphical item “Triangle” from
the list on the right hand side under “Shapes”
to your graphic

This will add a switch (to show the device On
feedback)

H-10 Double click on this triangle item in your
graphic

This will display its Graphic Item Properties

H-11 Double click on the “Variable symbol” This will call the CTI Workbench variable browser

H-12 Select “AM001_MAINT_ALM” from the list
Select red in the “TRUE color” property
Select grey in the “FALSE color” property

This will attach the triangle to AM001 PM alarm

H-13 Right click on your graphic background This will display the Graphic context menu

H-14 Select “Generate HTML Graphic…” From the Graphic context menu

H-15 Click on “Next”
Then navigate to the folder where you want to
store the generated HTML files (you can keep
the default location)

You can use the “Create Folder” to create a new folder

H-16 Click on “Next”
Then enter your HTML file name
Leave “K5NET5.DLL” in the Target name field
Use “10.55.71.83:1100” for Connection settings
Leave the other fields to their default values

This specify the name of the file in the target (ACP1)
system and how to connect to it, as well as other
attributes such as its size…

H-17 Click on “Next”
Tick the “Display HTML graphic” box
Then click on “Generate” button

This will create the HTML file from your PM_VIEW
graphic

 The graphic now needs to be downloaded in the

ACP1:

Repeat step G-1 to G-4.

The PM_VIEW graphic can now be used in

Workbench on line as well as with the X5Viewer tool.

See how the graphic animates when you change

values in a FasTrak WorkShop® Data Window.

Step by step example for 2500P-ACP1 : Preventive Maintenance

Page 12 of 12

CONCLUSION

Suggestions if you want to go further:

 Have the RESET_ALL signal read from the CPU (ex: C3)

 Have the AM001_CYCLES and AM001_HOURS_ON written to the CPU (ex: V2000 and V2002 long integers)

 Add these data on the PM_VIEW Graphic

This completes this ACP1 step by step introduction illustrated by the Preventive Maintenance application.

If you have question about this Application Note, or if you want this CTI Workbench “Preventive Maintenance”
application project backup sent to you by e-mail, do not hesitate to contact support@NAPA.fr

www.napa.fr
support@napa.fr
Tel :+33 4 93 20 93 93
Tel :+33 4 92 02 44 07

NAPA International France
Marina 7, 1545 Route Nationale 7
06270 – Villeneuve-Loubet
France

©2014 – NAPA International France
All rights reserved

mailto:support@NAPA.fr
http://www.napa.fr/
mailto:support@napa.fr
http://www.napa.fr/

