

CTI 2500 Series Controller

PROGRAMMING REFERENCE MANUAL

Version 1.34

CTI Part # 062-00371

2500PRM

ii CTI 2500 Series CPU Programming Reference Manual V1.33

 Copyright 2009-2024 Control Technology Inc.
 All rights reserved.

This manual is published by Control Technology Inc., 5734 Middlebrook Pike, Knoxville, TN 37921.
This manual contains references to brand and product names which are trade names, trademarks,
and/or registered trademarks of Control Technology Inc.

Siemens®, SIMATIC®, and Series 505® are registered trademarks of Siemens AG and Siemens
Energy and Automation, Inc.

TISOFT™ and PowerMath™ are trademarks of Siemens Energy and Automation. Inc.

PLC WorkShop® is a registered trademark of FasTrak Softworks, Inc.

Other references to brand and product names are trade names, trademarks, and/or registered
trademarks of their respective holders.

 DOCUMENT DISCLAIMER STATEMENT

Every effort has been made to ensure the accuracy of this document; however, errors do occasionally
occur. CTI provides this document on an “as is” basis and assumes no responsibility for direct or
consequential damages resulting from the use of this document. This document is provided without
express or implied warranty of any kind, including but not limited to the warranties of merchantability
or fitness for a particular purpose. This document and the products it references are subject to
change without notice. If you have a comment or discover an error, please call us toll free at
1-800-537-8398 or email us at sales@controltechnology.com.

mailto:sales@controltechnology.com

CTI 2500 Series CPU Programming Reference Manual V1.33 iii

REVISION HISTORY

V1.0 10/14/08 Original Version

V1.1 10/16/08 Corrected typos

V1.2 10/30/08 Added description to PRINT instruction
Made corrections to SMC instruction
Corrected description of PRINT status bits in STW191

V1.3 1/19/09 Added table to define addresses for non-retentive and retentive relays.

V1.4 5/19/09 Added descriptions to Analog (PID) Loop parameter fields.
Added table for Special Function Error Codes

V1.5 7/29/09 Added descriptions for new SF instructions and SF Subroutine features
These features are supported in 2500 Series CPU firmware V6.0 (or later)
and 505 WorkShop V4.50 (or later).

V1.6 8/27/09 Corrected description of SF SWITCH / CASE / ENDSWITCH instruction.

V1.7 9/14/09 Corrected description of RLL Table to Word (TTOW) and Word to Table
(WTOT) instructions.
Enhanced description and added example for SFSUB0 instruction.

V1.8 6/13/10 Added instructions for run-time edit.
Updated copyright date.
Updated Status Word table.

V1.9 6/29/10 Added description and figure of bit numbering within words to Data
Representation section.
Enhanced description for Run-Time RLL Edits.
Corrected description in Conditional Branching (IF-ENDIF) example
Added description of differences between CTI 2500 Series PLC and
SIMATIC 505 controllers regarding operation of Cyclic SF Programs.

V1.10 8/16/10 Corrected description of errors reported by PRINT instruction.

V1.11 11/3/10 Greatly enhanced the descriptions of the Analog Alarm and Analog (PID)
Loop operation and parameter set.

V1.12 12/10/10 Enhanced description for RSD instruction.
Enhanced description of the SF SSR instruction and corrected example.

V1.13 12/20/10 Corrected Alarm Flag tables in Section 4.3 and Appendix B.

V1.14 09/19/11 Added operational notes for Loop PV Range Parameters (Section 5.3.6)
and Remote I/O Errors (STW145-146 in Appendix A).
Corrected typos.

V1.15 1/11/12 Added descriptions for new RLL instructions (ONDC, OFDC, MEDRM) and
enhanced features for Relational/Comparison instructions (EQU, NEQ,
LESS, LEQ, GRT, GEQ).
These features are supported in 2500 Series CPU firmware V6.18 (or later)
and 505 WorkShop V4.60 (or later).

V1.16 8/14/13 Added descriptions for Special Function MATH operations:
Exponentiation and Logarithm

V1.17 11/20/13 Corrected typo in Alarm Deadband example. (Section 4.2.14).
Corrected description in Loop Deviation Alarm Limits (Section 5.3.31) and
Analog Deviation Alarms (Section 5.2.16).

V1.18 3/14/14 Corrected description of STW231 in PLC Status Words (Appendix A).
Added description for Profibus I/O Status Bit 6 (added in firmware V6.11).

V1.19 5/27/14 Corrected description of operation for CTR instruction to document special
case when TCC and TCP are both set to zero.

V1.20 1/18/16 Added statement regarding SF Program Size limitation of 32767 bytes
maximum for each SFPGM and SFSUB (Section 3.4.1).

V1.21 4/12/16 Corrected description of SF Program operation when configured to be
called as part of the Analog (PID) Loop operation (Section 3.2.1.3).

iv CTI 2500 Series CPU Programming Reference Manual V1.33

REVISION HISTORY

V1.22 6/6/16 Improved description of PACKRS instruction (Section 3.5.18)
Added details on difference between CTI 2500 Series CPU and SIMATIC®
505 controller when using PACKRS ‘FROM TABLE’ operation.
Enhanced description for use of Short/Long Form Address formats used to
specify Memory Type and Offset of Ramp/Soak step status bits.

V1.23 6/9/16 Improved operational descriptions for Search Table For Equal (Section
2.6.10) and Search Table For Not Equal (Section 2.6.11) instructions.

V1.24 8/18/16 Corrected description of SF Program execution queues (limit of 32 active
programs applies only to Cyclic SFPGMs (Section 2.11.12).
Added description for compilation of SF Programs and SF Subroutines with
recommendations and procedures for on-line SF Program edits
(Section 3.2.3).

V1.25 9/15/16 Corrected descriptions for RLL instructions: STFE (Section 2.6.10) and
STFN (Section 2.6.11).
Corrected memory tables in Sections 3.5.16-17, 3.6 and Appendix B.
Added ‘Table of Contents’ hyperlinks and Bookmarks to the PDF document.

V1.26 11/29/16 Enhanced description of Special Function MATH statement (Section
3.4.18). Corrected various typos, document ‘Properties’ information, and
PDF options to correct Font formatting issues.

V1.27 11/30/18 Added description for Data Cache Connection Status (STW267) in
Appendix A – PLC STATUS WORDS.

V1.28 2/14/19 Corrected descriptions for STW258-259 (Serial Number) and STW267
(Data Cache Connection Status) added detailed descriptions for STW262-
454 in Appendix A – PLC STATUS WORDS.

V1.29 6/27/19 Corrected error is SQRT RLL instruction, where previous Result “B” location
was shown as unchanged in the event of an error (Section 2.8.6).

V1.30 9/2/20 Corrected SCALE example (Section 3.5.22). Incorrectly showed result as
V341.=82.8887. The correct value is -67.11.

V1.31 9/2/20 Enhanced description for SF SCALE instruction (Section 3.5.22).
Corrected description of operation and operation table for ‘Up-Down
Counter’ (UDC) instruction (Section 2.5.2).

V1.32 8/16/22 Added ‘Z’ (Zero) output to Up-Down Counter (UDC) instruction block
diagram (Section 2.5.2).
Corrected typo in ‘Maskable Event Drum with Word Output (MDRMW)
instruction ‘Configurable Control Mask’ and ‘Description of Operation’
(Section 2.5.11).
Corrected typo in ‘Search Table for Equal’ (STFE) instruction description
(Section 2.6.10).
Corrected description and operation of ‘Date Compare’ (DCMP) instruction
(Section 2.11.21).
Corrected operational diagrams in ‘Lead/Lag Compensation Filter’
(LEAD/LAG) instruction (Section 3.5.13)
Corrected Derivative Gain Limiting Algorithm (Section 5.3.23).
Corrected description and operation of ‘Special Calculation On’ Output
when SF Program is called by Loop (Section 5.3.25).
Added description for Alarm V-Flags (to Analog Alarm Section 4.4) and
Loop V-Flags (to PID Loop Section 5.5).
Corrected status bits indicating ‘No Special Function Program Called’ in SF
variable LCFH (Section 5.4 and Appendix B).

CTI 2500 Series CPU Programming Reference Manual V1.33 v

REVISION HISTORY

V1.33 1/31/24 Added a chapter containing comprehensive information regarding online
program editing.

V1.34 2/12/24 Improved formatting in Online Programming Edit (Chapter 2)

vi CTI 2500 Series CPU Programming Reference Manual V1.33

PREFACE

This Programming Reference Manual provides reference information for the CTI 2500 Series
Controllers. The information in this manual is directed to individuals who will be developing user
programs for the controller.

For information regarding the product features, installation, and operation, you should also obtain the
CTI 2500 Installation and Operation Guide (CTI Part # 062 -00370). This manual may be downloaded
from the CTI Web site http: //www.controltechnology.com/support/manuals/.

USAGE CONVENTIONS

Note:

Notes alert the user to special features or procedures.

CAUTION

Cautions alert the user to procedures that could damage equipment.

WARNING:

Warnings alert the user to procedures that could damage equipment and endanger the user.

CTI 2500 Series CPU Programming Reference Manual V1.33 vii

TABLE OF CONTENTS

CHAPTER 1 OVERVIEW ... 1

1.1 INTRODUCTION .. 1

1.2 PROGRAMMING OVERVIEW ... 1
 Relay Ladder Programming .. 1
 Special Function Programs and Subroutines ... 2
 Analog Alarms .. 3
 Analog Loops .. 3

1.3 CONTROLLER DATA TYPES ... 4

1.4 DATA REPRESENTATION ... 6

CHAPTER 2 ONLINE PROGRAM EDITING .. 8

2.1 OVERVIEW... 8

2.2 PREPARATION FOR ONLINE EDITS (IN PROGRAM MODE) .. 9
 Use 505 WorkShop® PLC Programming Suite (V4.90 or later) if possible 9
 Set PLC Memory Configuration to Allow Online Edits .. 9
 Set PLC Scan Time Configuration for Online Edit Processing 11

2.3 ONLINE EDITS TO PLC I/O CONFIGURATIONS ...12
 Local/Remote I/O .. 12
 Profibus I/O ... 13

2.4 PERFORMING RLL ONLINE EDITS...13
 General Operation .. 13
 Add an RLL Network ... 13
 Delete RLL Network(s) ... 14
 Modify an existing RLL Network ... 14
 Potential Sources of Run-Time Edit Compile Errors .. 17
 Additional Considerations ... 17

2.5 PERFORMING SF PROGRAM ONLINE EDITS ..19
 Organization of SFPGM/SFSUB Memory .. 19
 Differences between CTI 2500 Series and SIMATIC 505 SF Programs 19
 Online Edit Operation for SF Programs .. 19
 Recommendations for SF Program Online Edits ... 20

2.6 ONLINE EDITS TO ALARM AND LOOP BLOCKS ..21

CHAPTER 3 RELAY LADDER LOGIC ...23

3.1 OVERVIEW..23

3.2 RLL INSTRUCTION SUMMARY ..23
 Relay Instructions ... 23
 Electro-mechanical Operations (Timer / Counter / Drum) .. 25
 Relational and Comparison Operations .. 26
 Bit Operations ... 27
 Math Operations ... 27
 Logic Operations ... 28
 Word / Table Move Operations ... 29

viii CTI 2500 Series CPU Programming Reference Manual V1.33

 Program Control Operations .. 30
 Special Operations ... 31

3.3 RLL MEMORY ACCESS ... 32

3.4 RELAY INSTRUCTIONS ... 33
 Open Contact ... 33
 Closed Contact ... 34
 Logical NOT Contact .. 35
 One-Shot Contact... 36
 Normal Coil ... 36
 NOT Coil ... 37
 Set Coil ... 38
 Reset Coil ... 38
 Immediate Open Contact ... 39

 Immediate Closed Contact ... 39
 Immediate Coil ... 39
 Immediate NOT Coil ... 40
 Immediate Set Coil ... 40
 Immediate Reset Coil ... 40

3.5 ELECTRO-MECHANICAL INSTRUCTIONS (TIMER/COUNTER/DRUM) 41
 Counter (CTR) .. 41
 Up-Down Counter (UDC) ... 43
 On-Delay Timer (TMR / TMRF) .. 45
 Discrete Control Alarm Timer (DCAT).. 47
 Motor Control Alarm Timer (MCAT) ... 49
 On-Delay Coil (ONDC) ... 53
 Off-Delay Coil (OFFDC) ... 55
 DRUM (Time-Based) .. 57
 Time/Event DRUM (EDRUM) ... 59

 Maskable Event Drum with Discrete Outputs (MDRMD) ... 62
 Maskable Event Drum with Word Output (MDRMW) ... 66
 Mega Event DRUM (MEDRM) ... 70

3.6 RELATIONAL / COMPARISON OPERATIONS .. 78
 Compare (CMP) ... 78
 Equal (EQU) ... 79
 Greater or Equal (GEQ) ... 81
 Greater (GTR) .. 83
 Less or Equal (LEQ) ... 85
 Less (LESS) ... 87
 Not Equal (NEQ) .. 89
 Indexed Matrix Compare (IMC) .. 91
 Scan Matrix Compare (SMC) ... 93

 Search Table For Equal (STFE) ... 95
 Search Table For Not Equal (STFN) .. 97

3.7 BIT OPERATIONS .. 99
 Bit Clear (BITC) .. 99
 Bit Set (BITS) ... 100
 Bit Pick (BITP) .. 101
 Bit Shift Register (SHRB) ... 102
 Word Shift Register (SHRW) .. 104
 Word Rotate (WROT) ... 106

3.8 MATH / LOGIC OPERATIONS .. 108

CTI 2500 Series CPU Programming Reference Manual V1.33 ix

 Absolute Value (ABSV)... 108
 Addition (ADD) .. 109
 Subtraction (SUB) ... 110
 Multiplication (MUL) .. 111
 Division (DIV) .. 113
 Square Root (SQRT) .. 115
 Binary to BCD Conversion (CBD) ... 117
 BCD to Binary Conversion (CDB) ... 119

3.9 LOGIC OPERATIONS .. 121
 Word AND (WAND) .. 121
 Word OR (WOR) ... 123
 Word Exclusive-OR (WXOR) .. 125
 Table AND (TAND) ... 127
 Table OR (TOR) ... 129
 Table Exclusive-OR (TXOR) .. 131
 Table Complement (TCPL) ... 133
 Word-to-Table AND (WTTA) .. 134
 Word-to-Table OR (WTTO) .. 136

 Word-to-Table Exclusive-OR (WTTX) .. 138

3.10 WORD / TABLE MOVE OPERATIONS .. 140
 Move Word (MOVW) .. 140
 Move with Index (MWI) ... 142
 Move Word From Table (MWFT) .. 144
 Move Word To Table (MWTT) .. 146
 Move Image Register to Word (MIRW) .. 148
 Move Word to Image Register (MWIR) .. 150
 Move Image Register From Table (MIRFT).. 152
 Move Image Register To Table (MIRTT) .. 154
 Move Element (MOVE) ... 156

 Table To Word (TTOW) .. 161
 Word To Table (WTOT) .. 163

3.11 PROGRAM CONTROL OPERATIONS ... 165
 Unconditional END (END) .. 165
 Conditional END (ENDC).. 166
 Jump (JMP) / Jump End (JMPE) .. 167
 Skip (SKP) / Label (LBL)... 169
 Master Control Relay (MCR) / MCR End (MCRE).. 172
 Go To Subroutine (GTS)... 175
 Parameterized Go To Subroutine (PGTS).. 177
 Parameterized Go To Subroutine – Zero (PGTSZ) .. 181
 Start of Subroutine (SBR) ... 183

 Return from Subroutine (RET) .. 186
 PID Fast Loop (PID) ... 187
 Call SF Program (SFPGM) ... 189
 Call SF Subroutine (SFSUB) .. 192
 Start RLL Task (TASK) ... 198
 Special Operations ... 201
 Load Data Constant (LDC) ... 201
 Load Address (LDA) ... 202
 Time Set (TSET) ... 207
 Time Compare (TCMP) .. 209
 Date Set (DSET) ... 211

x CTI 2500 Series CPU Programming Reference Manual V1.33

 Date Compare (DCMP) .. 213
 Immediate I/O Read/Write (IORW) .. 215
 Read Slave Diagnostic (RSD) .. 218
 Text Box (TEXT) ... 221
 No Operation (NOP) ... 222

CHAPTER 4 SF PROGRAMS AND SUBROUTINES ... 224

4.1 OVERVIEW ... 224

4.2 SF PROGRAM/SUBROUTINE EXECUTION .. 224
 SF Programs .. 224
 SF Subroutines ... 229
 Editing of SF Programs during Run Mode ... 231

4.3 SPECIAL FUNCTION ERROR REPORTING AND RESPONSE .. 232

4.4 SPECIAL FUNCTION MEMORY USAGE ... 234
 SF Program Size .. 234
 SF Local Memory ... 234
 Memory Array Indexing .. 236

4.5 SPECIAL FUNCTION INSTRUCTIONS .. 238
 SF Instruction Data Fields .. 239
 Comment (*) ... 241
 BCD-to-Binary Conversion (BCDBIN) .. 242
 Binary-to-BCD Conversion (BINBCD) .. 243
 Call SF Subroutine (CALL) ... 244
 Correlated Data Table (CDT) ... 246
 Exit on Error (EXIT) .. 248
 Fall Through Shift Register (FTSR-IN / FTSR-OUT) ... 249
 Conditional Looping - FOR / NEXT .. 254

 Unconditional Branching - GOTO / LABEL .. 257
 Conditional Branching - IF (IIF) / ELSE / ENDIF .. 258
 Integer Math Operations (IMATH) .. 260
 Lead/Lag Compensation (LEAD/LAG) ... 263
 Real Number Math Operations (MATH) ... 265
 Pack Data (PACK).. 269
 Pack Analog Alarm Data (PACKAA) .. 272
 Pack Loop Data (PACKLOOP) .. 276
 Pack Ramp/Soak Data (PACKRS) ... 280
 Pet Scan Watchdog (PETWD) ... 286
 Print Message (PRINT) .. 287
 Return from SF Program / Subroutine (RETURN) ... 292
 Scale Analog Input to Engineering Units (SCALE) .. 293
 Sequential Data Table (SDT) ... 295
 Conditional Branching – SWITCH / CASE / ENDSWITCH .. 297
 Synchronous Shift Register (SSR) ... 299
 Scale Engineering Units to Analog Output (UNSCALE) .. 302
 Conditional Looping - WHILE / ENDWHILE ... 304

4.6 SF PROGRAM/SUBROUTINE DATA VARIABLES .. 306

4.7 SF PROGRAM/SUBROUTINE ERROR CODES ... 309

CHAPTER 5 ANALOG ALARMS ... 311

CTI 2500 Series CPU Programming Reference Manual V1.33 xi

5.1 OVERVIEW.. 311

5.2 ALARM PARAMETERS .. 311
 Alarm Title ... 312
 Alarm V-Flag Address ... 312
 Sample Rate ... 313
 Process Variable Address (V, WX, WY, None) .. 313
 PV Range Low/High (in Engr Units) ... 313
 PV is Bipolar (Yes/No) .. 313
 20% Offset on PV (Yes/No) .. 313
 Square Root of PV (Yes/No) .. 313
 Monitor Absolute Alarms (Yes/No) ... 313

 Absolute Alarm Limits (in Engr Units) ... 314
 Monitor Remote Setpoint (Yes/No) ... 314
 Remote Setpoint (V, K, WX, WY, None) .. 314
 Clamp Setpoint Low/High (in Engr Units) ... 314
 Alarm Deadband (in Engr Units) ... 314
 Special Function ... 315
 Deviation Alarms (Yes/No) ... 315
 Rate of Change Alarm Limit (in Engr Units per Minute) ... 315
 Broken Transmitter Alarm (Yes/No) ... 315

5.3 ALARM CONFIGURATION FLAGS (ACFH AND ACFL) .. 316

5.4 ALARM STATUS FLAGS (AVF) .. 317

5.5 ALARM ACKNOWLEDGEMENT FLAGS (AACK) .. 318

CHAPTER 6 ANALOG (PID) LOOPS ... 319

6.1 OVERVIEW.. 319

6.2 LOOP MODES OF OPERATION .. 319

6.3 LOOP PARAMETERS .. 320
 Loop Title .. 321
 PID Algorithm (Position/Velocity) .. 321
 Loop V-Flag Address (None, C, Y, V, WY)... 322
 Sample Rate (in Seconds) .. 322
 PV Address (None, V, WX, WY) ... 322
 PV Range (Low/High) ... 323
 PV Bipolar (Yes/No) .. 323
 20% Offset on PV (Yes/No) .. 323
 Square Root of PV (Yes/No) .. 323

 Loop Output Address (None, WY, V) ... 323
 Output is Bipolar (Yes/No) .. 323
 20% Offset on Output (Yes/No) .. 324
 Ramp/Soak for SP (Yes/No) ... 324
 Monitor Absolute Alarms (Yes/No) ... 324
 Absolute Alarm Limits (in Engr Units) ... 324
 Remote SP (None, V, K, WX, WY, LMN) ... 324
 Clamp Setpoint Limits Low/High (in Engr Units) .. 325
 Loop Gain ... 325
 Loop Reset (Reset Time in Minutes) .. 325
 Rate (Derivative Time in Minutes) .. 325
 Freeze Bias (Yes/No) ... 326
 Derivative Gain Limiting (Yes/No) .. 326
 Limiting Coefficient ... 326

xii CTI 2500 Series CPU Programming Reference Manual V1.33

 Alarm Deadband (in Engr Units) .. 326
 Special Calculation On (SP, PV, Output, None) .. 327
 Special Function ... 327
 Lock Setpoint, Lock Auto/Man, Lock Cascade .. 327
 Error Operation (Error Squared, Error Deadband, None) .. 327
 Reverse Acting (Yes/No) .. 328
 Monitor Deviation (Yes/No) .. 328
 Deviation Alarm Limits (in Engr Units) ... 328
 Monitor Rate (Yes/No) ... 328
 Rate of Change Alarm Limit (in Engr Units per Minute) ... 328
 Monitor Broken Xmit (Yes/No) ... 328

6.4 LOOP CONFIGURATION FLAGS (LCFH AND LCFL) .. 329

6.5 LOOP STATUS FLAGS (V-FLAGS) ... 330

6.6 LOOP ALARM ACKNOWLEDGEMENT FLAGS ... 332

6.7 RAMP/SOAK OPERATION ... 333

CHAPTER 7 MEMORY CONFIGURATION .. 335

7.1 OVERVIEW ... 335

7.2 MEMORY CONFIGURATION .. 336
 Ladder (L) Memory ... 336
 Variable (V) Memory .. 336
 Constant (K) Memory ... 336
 Special (S) Memory .. 336
 Timer/Counter (TC) Memory .. 336
 Drum Memory (D) Memory .. 336
 Shift Register (SR) Memory ... 336
 Table (T) Memory ... 337
 One Shot (OS) Memory ... 337

CHAPTER 8 SCAN CONFIGURATION .. 339

8.1 OVERVIEW ... 339

8.2 TIME SLICE CONFIGURATION ... 340
 Analog Loop Time Slice ... 340
 Analog Alarm Time Slice .. 340
 Cyclic Special Function Program Time Slice ... 340
 Priority Special Function Program Time Slice .. 340
 Normal Special Function Program Time Slice ... 340
 Ladder Special Function Subroutine Time Slice .. 340
 Normal Communications Time Slice .. 340
 Priority Communications Time Slice .. 341
 Ladder SF Subroutine 0 Time Slice ... 341

 Network Communications Time Slice .. 341

8.3 FACILITIES FOR ANALOG SCAN OPTIMIZATION .. 341
 Status Word 162... 341
 Program Elapsed Times ... 342

APPENDIX A – PLC STATUS WORDS ... 343

CTI 2500 Series CPU Programming Reference Manual V1.33 xiii

APPENDIX B – LOOP AND ALARM FLAGS ... 355

LOOP V-FLAGS (LVF) .. 355

LOOP CONFIGURATION FLAGS (LCFH AND LCFL) ... 356

ALARM V-FLAGS (AVF) .. 357

ALARM CONFIGURATION FLAGS (ACFH AND ACFL) .. 357

ALARM ACKNOWLEDGEMENT FLAGS (LACK AND AACK) ... 358

LIMITED PRODUCT WARRANTY .. 359

REPAIR POLICY .. 361

CTI 2500 Series CPU Programming Reference Manual V1.33 1

CHAPTER 1 OVERVIEW

1.1 Introduction

This manual is intended for use by individuals who are developing application programs for the CTI
2500 Series controller. Additional information about the controller, including the scan operation, is
contained in a companion manual, the CTI 2500 Installation and Operation Guide.

The CTI 2500 is an advanced function controller that combines the features of a programmable logic
controller and a loop controller. It is especially suitable for process control applications that require
analog control as well as discrete control.

1.2 Programming Overview

The CTI 2500 controller provides several facilities for programming a control application.

 Relay Ladder Programming

 Special Function Programming

 Analog Alarms

 Analog Loops

 Relay Ladder Programming

Relay Ladder Logic (RLL) is a graphical language similar to a relay diagram. It has traditionally been
used for discrete control applications. The RLL language supported by the CTI 2500 is compatible
with the RLL used in the Siemens SIMATIC® 505 PLC. The RLL language includes the following
groups of instructions.

Electro-Mechanical Replacements

These instructions include contacts, coils, timers, counters, and drums (stepper switches).

Bit Manipulation

These instructions provide the capability of reading, setting, and clearing bits as well as performing
logical AND / OR operations.

BCD Conversions

The BCD instructions allow you to convert numbers between binary and binary coded decimal
formats.

Word Move Instructions

Word Move instructions copy bits of a word values from source location(s) to a destination, which
may be another memory type or another address within the same memory type. You can also copy
selected bits between a word data type and a discrete Boolean data type.

Math

The Math instructions perform traditional integer mathematical calculations, including addition,
subtraction, multiplication, division and square root. You can also perform compare operations.

2 CTI 2500 Series CPU Programming Reference Manual V1.33

Table Instructions

The table instructions provide a means to manipulate array data. You can move data in and out of a
table, perform table searches, and perform bit level comparisons between two tables.

Real-time Clock Instructions

The clock instructions read and set the Time and Date for the Real-time Clock in RLL.

Subroutine Instructions

The subroutine instructions allow you to create and call RLL subroutines. They also include the ability
to call Special Function programs and subroutines.

Immediate I/O instructions

The Immediate I/O instructions read or write to the physical I/O during RLL execution rather than
waiting for the normal I/O update to take place later in the controller scan.

Miscellaneous

The RLL also contains instructions that allow you to turn on an output for a single scan (one-shot),
read diagnostic data from Profibus, and execute a PID loop on demand.

 Special Function Programs and Subroutines

Special Function (SF) programs and subroutines provide a statement-oriented procedural
programming language. Using the Special Function instructions, you can derive solutions that cannot
be done in RLL or would require complex RLL programming.

SF programs can be called from an RLL program or from analog loop or alarm tasks. SF subroutines
can be called from RLL, SF programs, or other SF subroutines. SF programs and SF subroutines use
a common instruction set.

Special Function Program instructions include the following groups:

Data Conversion

These instructions provide the capability to scale values and to convert between BCD and binary
format.

Math

Math instructions support both integer and real numbers. Operators include standard math functions
(add, subtract, multiply, divide, exponentiation, comparison, and bit operations) as well as a unique
LEAD/LAG function that can be used with cyclic applications.

Program Flow

These instructions alter the order in which instructions are executed. They include the ability to call
subroutines, to branch to a label, and to implement conditional branching (If, Then, Else).

Data Manipulation

These instructions provide the ability to search tables, pack and unpack data, and to perform various
shift register operations.

CTI 2500 Series CPU Programming Reference Manual V1.33 3

 Analog Alarms

Analog Alarms are parameter-driven functions that allow you to monitor the Process Variable (PV).
Each alarm block allows you to configure up to four absolute-value alarms and two sets of alarms that
monitor the deviation of PV from the Setpoint. In addition, you can monitor the rate-of change of the
Process Variable and detect a broken transmitter. An analog alarm may call a special function
program to perform additional calculations. The number of analog alarm functions supported is model
dependent. See the CTI 2500 Installation and Operation Guide for CTI 2500 Series model
capabilities.

 Analog Loops

The Analog Loop function supports both VELOCITY and POSITION PID (Proportional-Integral-
Derivative) algorithms. Analog Loops are used to control analog processes by varying the loop output
so that the output of the process (PROCESS VARIABLE) matches a target value (SETPOINT).

The operation of a particular loop is established by parameters entered by the user. In addition to
executing the control loop, the loop task also provides the same alarm monitoring capability as the
Analog Alarm task described in the next section.

The SETPOINT can also be automatically varied using a RAMP/SOAK Table. The RAMP/SOAK Table
allows you to program a change in the SETPOINT over time (RAMP) and followed by a period that the
SETPOINT will remain the same (SOAK). Using a series of ramp/soak steps, you can control most
batch processes.

Loops are typically executed on a cyclic basis, independent of the user RLL or SF program logic.
Some models of the CTI 2500 also support the capability of calling a PID loop from the RLL.

Loops may be cascaded, where the output of one loop becomes the input for the next loop. A loop
may call a Special Function program to perform additional calculations. The number of loops
supported is model dependent. See the CTI 2500 Installation and Operation Guide for CTI 2500
Series model capabilities.

4 CTI 2500 Series CPU Programming Reference Manual V1.33

1.3 Controller Data Types

The following data types are accessible from the user program. The value within a data element is
addressed by specifying the data type and a location number. For example discrete input 1 is
referenced as X1.

I/O Register Data

The I/O register contains the data obtained from the process (inputs) and data used to control the
process (outputs). When the I/O is configured, this data is associated with input and output modules
contained in the local base, remote bases, and slaves attached to the Profibus network. There is an
I/O register representing discrete inputs and outputs and an I/O register representing Word Inputs
and Outputs. The table below describes the contents:

Mnemonic Data Type Data Format Access

X Discrete Input Bit Read Only

Y Discrete Output Bit Read and Write

WX Word Input Word (16 bit) Read Only

WY Word Output Word (16 bit) Read and Write

Inputs and Outputs share the same I/O register location. Therefore X1 and Y1 are the same data
point. Similarly WX1 and WY1 are the same.

Control Relay Data

A Control Relay is an internal discrete value that can be written and read by user logic. It is not
associated with any I/O point. The number of control relays supported depends on the controller
model. See the CTI 2500 Installation and Operation Guide for CTI 2500 Series model capabilities.

Control relays may be retentive or non- retentive. Retentive control relays maintain their value when
AC power is removed, assuming the controller battery is good. Whether a particular control relay is
retentive or not depends on the control relay address. See the table below.

Non-Retentive Retentive

C1 – C768 C769 – C1024

C1025 – C1792 C1793 – C2048

C2049 – C2816 C2817 – C3072

C3073 – C3840 C3841 – C4096

C4097 – C4864 C4865 – C5120

C5121 – C5888 C5889 – C6144

C6145 – C6912 C6913 – C7168

C7169 – C7936 C7937 – C10240

C10241 – C56320

Variable Memory Data

Variable Memory (V Memory) is a collection of 16 bit words. The number of words available depends
on the controller user configuration and the available user memory, which varies with the controller
model. V memory can be read and written by the user program.

CTI 2500 Series CPU Programming Reference Manual V1.33 5

Constant Memory Data

Constant Memory (K Memory) is a collection of 16 bit words. The number of words available depends
on the controller user configuration and the available user memory, which varies with the controller
model. K memory can be read but not written by the user program. It can be modified by other
sources, such as programming software.

Status Word Memory Data

Status Word Memory (STW) is a collection of 16 bit words user to communicate the status of the
controller, the user program, and the associated I/O to the user program. Status cannot be modified
by the user program; however some status words can be modified by programming software. See
Appendix A for a list of the status words used with the CTI 2500 controller.

Timer Counter Memory Data

The Timer/Counter memory contains two values for each element as indicated below.

Mnemonic Data Type Data Format Access

TCP Timer Counter Preset Word (16 bit) Read/Write

TCC Timer Counter Current Word (16 Bit) Read/Write (RLL)
Read Only (SF)

Note:

Changes to TCP do not modify the value save in the RLL program. TCP values modified by logic
or HMI will be overwritten by the original stored value if the program is reloaded, the

network containing the Timer/Counter instruction is edited, or a Complete Restart is executed.

Drum Memory Data

The Drum memory contains four values for each drum as indicated below

Mnemonic Data Type Data Format Access

DSP Drum Step Preset Word (16 bit) Read/Write

DSC Drum Step Current Word (16 Bit) Read/Write

DCP Drum Count Preset Word (16 Bit) Read/Write

DCC Drum Count Current Word (16 Bit) Read/Write (RLL)
Read Only (SF)

Note:

Changes to DSP and DCP do not modify the RLL program. If the program is reloaded,
a network containing a drum instruction is edited, or a Complete Restart is executed,

modified DSP and DCP values will be replaced with the values stored in the RLL program.

6 CTI 2500 Series CPU Programming Reference Manual V1.33

Word

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MSB LSB

1.4 Data Representation

Data is represented in the CTI 2500 controller as bits, bytes, words, and double words.

 Bit A single binary digit that has either ON (1) or OFF (0) state. Bit locations are referenced
by direct address in discrete memory areas (i.e., X32 or C86) or bit number in word
memory areas (i.e., V52.3, K2.14, WY6.1, or STW1.16)

Note:

Bit assignments within words are numbered left to right so that
Bit 1 is the MSB and Bit 16 is the LSB.

 Bits within words are numbered 1-16 from left to right so that Bit 1 references the MSB

and Bit 16 references the LSB as shown below.

 Byte A byte consists of 8 contiguous bits used to represent a maximum unsigned value of

255. Bytes are referenced only as “Most Significant Byte” (Bits 1-8) and “Least
Significant Byte” (Bits 9-16). Only one RLL instruction (Move Element – MOVE)
references the byte data type directly.

 Word A word consists of 16 bits. The word may be used to store signed integers, unsigned

integers, binary coded decimal data, or a field of flag bits.
.

 Signed integers are stored in the two’s complement format, with the sign bit in the
most significant bit. When the sign bit is 0 the number is positive; when the sign bit is
set to 1, the number is negative. A signed integer can contain values ranging from -
32,768 to +32,767.

 Unsigned integers make use of the high bit to represent a positive number.
Consequently, the value stored can range from 0 to 65, 535.

 BCD data is stored by assigning 4 bits to represent a decimal digit. As a result, one
16 bit word using BCD can hold 4 decimal digits. For example, a decimal value of
2569 would be represented as shown below.

2 5 6 9

0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1

 Hexadecimal (Hex) is simply an alternative “programmer friendly” way of representing
binary data. Even though the data format is very similar to BCD, hexadecimal and
BCD values are not equivalent.

CTI 2500 Series CPU Programming Reference Manual V1.33 7

Double Words consist of two consecutive words used to contain long integers, Real numbers,
and address data. Although double words are stored internally as 32 bit entities, they are
addressed as two consecutive memory locations.

MSB LSB MSB LSB

V100 Most Significant Word V101 Least Significant Word

 LONG INTEGERS are stored in the two’s complement format.
Long integer values can range from -2,147,483,628 to +2,147,483,647

 REAL NUMBERS are stored in single-precision floating point format that complies with the
ISEE Standard 754-1985 standard. This format provides 6 significant digits of resolution
and supports numbers in the range of +3.4028x1038 (displayed as 3.4028E38). The
following figure shows the data format for a real number addressed as (V201.).

V201

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

V202

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sign Bit

Exponent Mantissa

 LOGICAL ADDRESS data, used by some instructions such as LDA, are stored in a special
format that contains the memory type code and the address offset. The following figure
shows the data format for a logical address stored in V315-V316.

V315

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

V316

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Memory Type Offset

 Memory Type codes (Hex)

 V = 01 DSP = 10
 K = 02 DSC = 11
 WX = 09 DCP = 12
 WY = 0A DCC = 1B
 TCP = 0E STW = 1A
 TCC = 0F

8 CTI 2500 Series CPU Programming Reference Manual V1.33

CHAPTER 2 Online Program Editing

The CTI 2500 Series controller allows you to edit the user program while the process continues to
run. While this capability provides significant benefits in some process control applications, it must be
approached with care.

! WARNING

Use extreme care when performing run-time edits. Incorrect changes may cause
the process to fail and could result in equipment damage and/or death or serious

injury to personnel.

Carefully plan any run-time edits to an active process.
Avoid doing run-time edits to an active process if possible.

As the name implies, online edit allows changes to be made to the user program while the controller
is in RUN mode. When you enter the first program change, the controller automatically enters a
special EDIT mode. In EDIT mode, the process continues to be controlled by the original RLL
program as it existed prior to entering the change. When you request a return to RUN mode after
making all changes, the controller scan is extended while the new version of the program is compiled.
Upon a successful compile of the new version, controller transitions to RUN mode and the process
resumes with the new version in control.

WARNING

It is possible to enter program changes that will not compile and execute. If the new
program will not compile successfully, the controller will enter PROGRAM mode with all
outputs frozen at their last state. This could cause unpredictable operation resulting in

equipment damage and/or death or serious injury to personnel. It is your responsibility to
provide for safe recovery should this condition occur.

Always use the SYNTAX check function to validate all program changes

 before setting the controller to RUN mode.

2.1 Overview

All CTI 2500 Series and SIMATIC 505 PLCs include a feature called Online Edit that allow most
operations in the PLC program to be modified while the PLC is in RUN mode without causing a
“bump” to the I/O. Unless specifically noted, the operation of the CTI 2500 Series PLC exactly
duplicates the SIMATIC Series 505 controllers. The following describes this Online Edit feature
including any limitations of what can be modified and provides a procedure for steps to complete an
Online Edit operation.

The following changes are permitted during an Online Edit:

CTI 2500 Series CPU Programming Reference Manual V1.33 9

a) Use any configured memory address: including Discrete/Word I/O, Word Memory (V,K),

Control Relays, and Instructions (Timers/Counter, Drums, Shift Registers, Tables, One-
Shots)

b) RLL program: Add, delete, or change RLL networks

c) SF Programs/Subroutines:

 Add, delete, enable, or disable SP Programs/Subroutines

 Add, delete, or change statements within an existing program (with some restrictions
– see details below)

d) Analog Alarms:

 Add, delete, enable, or disable Alarm control blocks

 Change configuration of an existing Alarm control block

e) PID Loops:

 Add, delete, enable, or disable Loop control blocks

 Change configuration of an existing Loop control block

f) PLC Port Lockout state (Locked or Unlocked)

g) 505 I/O Configuration (includes Local Base 0 and Remote Bases 1-15):

 Add, delete, enable, or disable Remote I/O bases

 Change configuration of an existing base (slot configuration)

h) Profibus I/O Configuration:

 Limited changes allowed (see details below)

Note also that an Online Edit will preserve a “force” that has been set on any memory address.

2.2 Preparation for Online Edits (in PROGRAM Mode)

 Use 505 WorkShop® PLC Programming Suite (V4.90 or later) if possible

505 WorkShop performs an automatic “syntax check” of RLL networks during Online Edit
operation and detects most errors that would result in a PLC Fatal Error.

If using TISOFT™, you must use V7.1 (latest version) to ensure the operation of CTI 2500
Series PLCs during Online Edit matches that of the SIMATIC 505 controllers. Additionally, all
diagnostic checks must be performed manually.

All examples in this document are shown using 505 WorkShop (V4.90 and later).

 Set PLC Memory Configuration to Allow Online Edits

The PLC memory configuration must be arranged so that memory is available to add
addresses, instructions, and control blocks to RLL program, SF Programs/Subroutines, Alarms,
and/or Loops while a PLC program is in RUN mode.

The memory configuration sets the amount of PLC memory allocated to each of these areas.
The following image shows a typical configuration and description PLC function that
corresponds to each memory allocation entry.

10 CTI 2500 Series CPU Programming Reference Manual V1.33

The Ladder (RLL Source) memory usage can be checked by selecting ‘PLC Utilities’ / ‘PLC
Status’ in the main toolbar. See below.

The S-Memory (Special memory used for SFP/SFS, Alarms, and Loops) usage can be checked

by opening the SF Program list via the button in the main menu.

CTI 2500 Series CPU Programming Reference Manual V1.33 11

If using TISOFT, available Ladder and Special memory can be determined by accessing AUX 28
under ‘Diagnostics’.

We recommend setting each ‘User’ memory type to at least twice (2X) the amount that is currently
used in the PLC program (if possible). Otherwise, allocate the available PLC memory across the
memory areas most likely to be affected by Online Edits (such as Ladder memory, Variable memory,
and Special Memory).

The PLC Memory Configuration can be changed only while the PLC is in PROGRAM mode.

 Set PLC Scan Time Configuration for Online Edit Processing

CTI recommends that the PLC Scan Time configuration be set to maximize processing of “deferred”
task codes used for most Online Edit operations.

This is not a requirement and does not apply to special applications requiring ‘Fixed Scan Time’ or
absolute minimum PLC cycle time under all conditions.

The following PLC Scan Time settings are recommended:

 Scan Time Mode: ‘Variable’ or ‘Variable with Limit’

 Normal Communication Time Slice: Based on S-Memory Usage: 5ms / 10K bytes

 10 msec (minimum)

For example, if the PLC Program uses 40K of S-Memory, the ‘Normal Communication Time
Slice’ should be set to 20 msec to ensure all SF Online Edits can be processed in a single
PLC cycle.

12 CTI 2500 Series CPU Programming Reference Manual V1.33

IMPORTANT NOTE
This is considered a “worst-case” setting. The CTI 2500 Series PLC only uses time required to

complete “pending” requests each PLC scan.
This setting will not increase the PLC scan time except during Online Edit operations. Even then, it is

very rare for the ‘Normal Communication’ processing to exceed 3-4 msec.

2.3 Online Edits to PLC I/O Configurations

All Discrete I/O (X/Y) addresses and Word I/O (WX/WY) addresses supported by the ‘PLC Type’ (i.e.
model) are automatically allocated in the CTI 2500 Series controller. No user action is required to
manage the I/O memory addresses.

 Local/Remote I/O

The CTI 2500 Series I/O system supports Online Edits (while the PLC is in RUN mode) without
“bumping” the I/O for unchanged module slot positions.

The following operations are supported:

 Add or delete a Remote Base (Base 1-15)

 Enable or disable an existing Remote Base

 Modify I/O configuration of any Local/Remote Base

CTI 2500 Series CPU Programming Reference Manual V1.33 13

Add/Delete/Change:

o ‘I/O Module Definition’ for any module slot (1-16)

o ‘I/O Address’ mapped to any module slot

o “SF Designation” for any module slot

 Profibus I/O

The CTI 2500 Series Profibus-DP I/O system is compatible with SIMATIC Series 505 Profibus-DP I/O
and allows exactly the same operations as Online Edits (while the PLC is in RUN mode).

Changes to Profibus-DP network configuration, such as Bus Parameters or Slave Configuration
(including the addition, deletion, or change of exiting Slave configuration), is allowed while Profibus
network is operating. However, this will cause a new Profibus configuration to be downloaded to the
PLC and result in “bumping” I/O assignments associated with all Profibus slave devices during
initialization of the new Profibus Master configuration.

Only the following changes to the Profibus I/O can be made without “bumping” the I/O without
“bumping” the I/O for unchanged module slot positions:

 Change PLC ‘I/O Address’ mapped to a specific Module Slot for an existing Profibus-DP slave

If the CTI 2500 Series (or SIMATIC Series 505) Profibus RBC is configured as Profibus-DP slave
AND the ‘Slave Parameters’ for the Profibus RBC includes ‘505 Mismatch Mode: Enable’, the
following modifications can be made without “bumping” the I/O for unchanged slot positions:

 Insert/Delete/Change:

o ‘Module’ assignment for any module slot (1-16)

o ‘I/O Address’ mapped to any module slot

2.4 Performing RLL Online Edits

 General Operation

The CTI 2500 Series PLCs include an operational mode (called EDIT mode) that allows for multiple
changes (Add, Delete, or Modify) to be integrated into the RLL program at the same time. This
provides the capability to add/modify a complete segment of the RLL program without worrying
about partial integration of multi-rung operations.

The Online Edit operations and EDIT mode are detailed below.

 Add an RLL Network

Choose the rung immediately below where you wish to insert the new RLL Network.
Right-click and select ‘Insert’ from drop-down menu. Select ‘Network’ in pop-up window.
New ‘blank’ rung appears in the location selected.

Enter new RLL instructions to execute, and press (or [F8]) to accept the change.

Each RLL Network must be added and accepted individually.

505 WorkShop performs a verification check during each ‘Insert’ rung operation. This is done so an
“Out of Ladder Memory” error can be detected and operation aborted before RLL Memory is
corrupted. Any syntax errors are displayed only when ‘Transfer to RUN Mode’ is selected (see details
below).

An example of an “Out of Ladder Memory” error is shown below:

14 CTI 2500 Series CPU Programming Reference Manual V1.33

The time to complete this memory verification check is usually < 0.5 second for most RLL programs
but can take several seconds for very large programs (25000 rungs). This time can be minimized by
setting ‘Normal Communication’ time slice as recommended in Section 2.2.3.

 Delete RLL Network(s)

Choose the RLL Network to be deleted. Right-click and select ‘Delete’ from drop-down menu. In pop-
up window, verify ‘Network’ number(s) to be deleted. It is possible to delete a range of consecutive
rungs if desired.

Press (or [F8]) to accept the change.

 Modify an existing RLL Network

Select rung to be modified by double-clicking anywhere on the rung.
Rung is highlighted in the Ladder Editor.
Add, delete, or change instructions/addresses in that network.

Press (or [F8]) to accept the change.

Online edits are accomplished by PLC Programing editor (WorkShop or TISOFT) sending a series of
“task code” commands to the PLC as noted below:

 Transfer to EDIT mode.

 Read RLL Network being edited

 Delete Network (if RLL network is being deleted)

 Insert Network (if RLL network is being added)

 Modifying an existing rung (performed by issuing both Delete/Insert Network commands)

 Transfer to RUN Mode (when user transfers PLC to RUN mode)

Details for each of each operation are provided below.

 Transfer to EDIT Mode:

This action is triggered by selecting ‘Yes’ in the following pop-up dialog when first modification is
“accepted” by the user:

CTI 2500 Series CPU Programming Reference Manual V1.33 15

IMPORTANT NOTE
It is very important to have an electronic or printed copy of the original RLL program before starting

an RLL program Online Edit.
Once the PLC enters EDIT mode (after the first changed is accepted), there is no way to

automatically “undo” the changes and revert back to original RLL Source. The only way to exit EDIT
mode while the PLC is running is to transfer to RUN mode.as described below.

Consequently, if the situation arises where the PLC RLL program must be returned to the original
RLL Source after the PLC is in EDIT mode (at least one change has been “accepted”), the only way

to accomplish this is to individually “undo” each change and return each rung to its original state.

While in EDIT mode, the RLL Source Code is modified based on the RLL Program changes entered
by the user. However, these changes are not yet compiled and executing in the PLC. The PLC is still
running the original RLL Compiled Program (before Online Edit operation was started).

The WorkShop/TISOFT Ladder Editor displays rung information based on the RLL Source Code.
Because of this, the status information provided in the Ladder Editor window can be confusing and
misleading while the PLC is running in EDIT mode.

For example:

The following rung is in the original PLC program running in the PLC.

During Online Edit, it was changed as shown below and PLC transferred to EDIT mode.

Now the Ladder Editor shows the following:

The rung operation appears to be incorrect because the Output C210 is ON even though input X14 is
OFF. Actually, the PLC is still executing the original rung and operation is correct.

 Read RLL Network being edited

This allows WorkShop/TISOFT to extract all RLL Network that is being edited from the RLL
Program data file.

 Delete Network (if RLL network is being deleted)

16 CTI 2500 Series CPU Programming Reference Manual V1.33

The RLL Network data (read above) is removed from the RLL Program by shifting remainder of
the RLL program forward by the number of bytes in the rung that was deleted.

 Insert Network (if RLL network is being added)

The new rung is inserted starting at the file position where the edited RLL Network began, and
the remainder of the RLL Program is shifted down by the number of bytes in the rung that was
added.

 Modifying an existing rung

This operation involves Deletion of the previous rung (RLL Network being edited) and Insertion

of the new rung. Both of those operations are described above.

 Transfer to RUN Mode

This operation is triggered by choosing ‘Yes’ in the following pop-up dialog after user selected
transfer to RUN mode via the Ladder Editor.

The following actions are then performed:

a) If syntax error was detected during last edit operation, 505 WorkShop prevents the transfer to
RUN mode and displays a message indicating the RLL Network where error is located as shown
below. This prevents a failed compile (and resulting Fatal Error) and allows the user to correct
the error condition.

NOTE: If using TISOFT, this ‘Syntax Check’ must be initiated manually.

b) Compile of PLC Program Source code is initiated. While the RLL Source is being compiled (can
take up to 6-7 seconds for very large RLL programs), the PLC program execution (RLL,
SFP/SFS, Alarms and Loops) and communications (Serial or TCP/IP) are suspended.

All Remote I/O bases/modules are held at ‘last state’ via “keep-alive” commands sent out by the
PLC about every 350-400 msec.

Profibus-DP Master continues to run using last “output” data. “Input” data is not processed
during the compile.

CTI 2500 Series CPU Programming Reference Manual V1.33 17

c) If the compile is successful, the PLC starts executing the new RLL compiled code and resumes

normal processing at the start of the next PLC scan cycle. At this point, the Ladder Editor
displays match the executing code.

 Potential Sources of Run-Time Edit Compile Errors

Following are some conditions that will cause the RLL compile to fail, resulting in the controller being
placed in PROGRAM mode with outputs frozen, if executed. Always execute a syntax check before
attempting to go to RUN mode.

SKP Instruction without a Corresponding LBL

There must be a LBL statement associated with each SKP instruction and it must occur in the same
program segment (SBR or TASK) as the SKP instruction.

SBR instruction without a terminating RTN

A subroutine must be terminated by an unconditional RTN instruction.

GTS, PGTS or PGTSZ without corresponding SBR

The subroutine referenced by a GTS, PGTS, or PGTSZ instruction must be defined before it can be
referenced.

Use of unsupported features

Your RLL program must not use an instruction that is not supported by the firmware release installed
in your controller or reference undefined or unconfigured data elements. This condition may not be
detected by all versions of all programming software tools.

Exceeding L Memory

When you modify or add networks to an RLL program using the run-time edit function, it is possible
for the edited program to exceed the amount of L-Memory that has been configured. If the configured
L-Memory capacity is exceeded, one or more networks at the end of the program will be deleted

 Additional Considerations

When you edit an existing network, Workshop or TISOFT will delete the existing network and then
insert the edited network in its place. If the original network contains an instruction with retained state
information and this instruction remains in the network after the edit, you may experience unexpected
results when transferring to RUN mode. These unexpected results occur due to initialization of the
state information for the “retained state” instruction.

For example, an existing network contains a One-Shot contact that passes power flow for one scan
when detecting an OFF-to-ON input transition. If the One-Shot input condition has been TRUE for
more than one scan, the output coil is turned OFF and will remain OFF until the input state goes
FALSE and back TRUE. However, if the network is edited at this point, the “retained state” of the
One-Shot will be lost and re-initialized when the program is compiled so that the output coil will turn
ON for one scan immediately following the transfer to RUN mode.

18 CTI 2500 Series CPU Programming Reference Manual V1.33

WARNING

Take extreme care when performing a run-time edit on an existing network that
contains one or more “retained state” instructions. When returning to RUN mode

following the edit, these instructions are re-initialized during the program compilation.
This may cause the network output coil(s) to temporarily change state.

You may experience unexpected results that could result in damage to equipment
and/or death or serious injury to personnel. If you must edit a network containing
one of these instructions, you must consider the effect upon the process caused

by this initialization and ensure that the process state can safely handle this effect.

The instructions with retained state information are shown in the following table.

Operation of Retained-State Instructions in Networks affected by Run-Time Edits

Instruction Initial Condition After Run-Time Edit

CTR Initialized to require OFF-to-ON transition of the count input. TCP (count preset) is
set to the instruction’s preset value and TCC (current count) is set to 0.

DCAT
MCAT

TCP (time preset) and TCC (Time Remaining) are set to the Preset value in the
DCAT/MCAT instruction. As a result, the Alarm Timer is restarted

DRUM DSP (Preset Step) and DSC (Current Step) are set to the Preset Step specified in
the DRUM instruction. DCC (Current Count) is set to the programmed count for this
Preset Step. The process is now controlled by the Preset Step.

DSET Initialized to require a OFF-to-ON transition of the input.

EDRUM
MDRMD
MDRMW

The Count Preset values for each of the Drum steps are copied from the EDRUM
instruction to the corresponding DCP (Count Preset) variables. DSP (Preset Step)
and DSC (Current Step) are set to the Preset Step specified by the instruction and
DCC (Current Count) is set to the programmed count for this Preset Step. Finally,
the Jog Input is initialized to require OFF-to-ON transition. The process is now
controlled by the Preset Step.

MWFT
MWTT

The Table Pointer is set to the table base and the Move Count is set to 0.

OS Initialized to set the Output on the first scan for which the Input is TRUE.

SHRB
SHRW

Initialized to require an OFF-to-ON transition on the input.

TMR
TMRF

TCP (Time Preset) and TCC (Time Remaining) are set to the Preset value in the
TMR/TMRF instruction. As a result, the Timer is restarted.

TSET Initialized to require an OFF-to-ON transition of the input.

UDC Initialized to require an OFF-to-ON transition of the Count input. TCP (Count
Preset) is set to the specified value and TCC (Current Count) is set to 0.

CTI 2500 Series CPU Programming Reference Manual V1.33 19

2.5 Performing SF Program Online Edits

This section details the Online Edit operations for the CTI 2500 Series PLCs.

 Organization of SFPGM/SFSUB Memory

All SF Programs are stored sequentially in S-Memory with SFPGMs first followed by SFSUBs. The
lowest numbered is first (SFPGM1 is first if it exists) followed by the next higher number.

If a new SF Program is added, it is inserted into its proper position and all other programs are shifted
as needed. The same situation applies if a SF Program is deleted or edited. Any edit operation that
uses more or less memory causes a shift in SF Programs stored in subsequent S-memory positions
(see NOTE below).

The memory organization provides very efficient program storage, but it also has the disadvantage of
allowing an edit of one SF Program to cause all other SFPGMs/SFSUBs that follow in S-Memory
structure to be disabled while the S-Memory area is being shifted.

IMPORTANT NOTE
Each Online Edit to a SF Program that includes a change to amount of memory used (add/delete line
or add/delete a parameter in an expression) will result is S-Memory being shifted to accommodate the

change.
This operation causes the SF Program being edited and all of the SFPGMs/SFSUBs that are stored

in S-Memory following it to be disabled while memory is being shifted.
This operation usually can be completed within one PLC scan in most PLC programs. However,

performing SF Online Edit on PLC programs containing a large number and/or size of SF Programs
can result in extended disabled times for multiple SF Programs.

See recommended settings to minimize this issue in Section 2.5.4.

 Differences between CTI 2500 Series and SIMATIC 505 SF Programs

All SFPGM/SFSUB programs in the CTI 2500 Series PLC run as “compiled” programs. This allows
them to run much faster that interpreted programs, but it requires that each program meet very strict
syntax requirements in order for the compile operation to succeed.

SIMATIC Series 505 PLCs with PowerMath™ option allow “compiled” SF Programs with the same
requirements as CTI 2500 Series PLCs. The difference is that these controllers also allow
“interpreted” SF Programs with less syntax rules.

 Online Edit Operation for SF Programs

Online Edit of SF Programs is allowed, but it is not supported in the same way as done with the RLL
program. Online Edit of RLL program includes a run-time EDIT mode that allows changes to multiple
networks to be entered but not executed until the PLC is transferred to RUN mode.

The CTI 2500 Series PLCs do not include a similar EDIT mode for SF Programs. Below are the rules
for SF Program Online Edits:

 An SF Program Online Edit can consist of any of the following operations:

o Add, delete, enable, or disable a SFPGM or SFSUB

o Modify SF Program Header, including Title, Program Type, and Error Handling

o Add or Modify one SF statement (line) of existing SFPGM/SFSUB

o Delete one or range of consecutive SF statements

20 CTI 2500 Series CPU Programming Reference Manual V1.33

 The PLC stores and compiles the entire SF Program as soon as it is “accepted” by the

user. The SF Program is disabled during this operation.

o If the SF Program was enabled at the start of the edit operation and the operation is
successful, the SF Program is re-enabled.

o If the compile fails (see explanation below), the SF Program is disabled and must be
manually enabled via the SF Program Header dialog box.

 Because each SF statement is compiled immediately after it is changed, there are cases
that can result in the SF Program failing to compile. The insertion of any of the following
statements during Online Edit will cause the SF Program to be disabled:

o Add or Delete a ‘GOTO’ statement without a corresponding ‘LABEL’
NOTE: This can be averting by adding the ‘LABEL’ or deleting ‘GOTO’ first.

o Add or Delete ‘IF’, ‘ELSE’ , or ‘ENDIF’ without corresponding statements
NOTE: Since it is not possible to add multiple statements on the same line, a new
‘IF-ENDIF’ segment cannot be added to a SF Program during Online Edit without
disabling the program. It is possible to add an ‘ELSE’ statement to an existing ‘IF-
ENDIF’ segment.

o Addition of ‘FOR’ or ‘NEXT’ without corresponding statement
NOTE: Since it is not possible to add multiple statements on the same line, a new
‘FOR-NEXT’ segment cannot be added to a SF Program during Online Edit without
disabling the program.

o Addition of ‘WHILE’ or ‘ENDWHILE’ without corresponding statement
NOTE: Since it is not possible to add multiple statements on the same line, a new
‘WHILE’ segment cannot be added to a SF Program during Online Edit without
disabling the program.

o Addition of ‘’SWITCH’, ‘CASE’, or ‘ENDSWITCH’ without corresponding statements
NOTE: Since it is not possible to add multiple statements on the same line, a new
‘SWITCH’ segment cannot be added to a SF Program during Online Edit without
disabling the program.

 Recommendations for SF Program Online Edits

If the Online Edit involves a minor change that can be accomplished within the “one
statement at a time” restriction, it is possible to perform those modifications by a SF Program
Online Edit.

For more complex changes requiring Add/Delete/Modify of multiple lines in a SF Program, we
highly recommend that the SF Program be disabled (in SF Program Header) before
modifying an existing SF Program. This will ensure that the SF Program is not executed while
edits are in progress. The SF Program can then be manually ‘Enabled’ after edits are
completed.

The time required to store, compile and re-enable the SF Programs after each edit depends
on the number and size of SF Programs that exist. This time can be minimized by setting the
‘PLC Scan Time’ settings as described in Section 2.3.

If it is absolutely necessary to modify multiple statements in an existing SF Program without
disabling it for an extended period, there is one work-around to this restriction by using the
[Load by Parts] feature in WorkShop or TISOFT. This allows you to edit SF Program(s) off-

line and then download the entire programs to the PLC while it is in RUN mode.

CTI 2500 Series CPU Programming Reference Manual V1.33 21

The SF Program is disabled only during the time while the PLC is overwriting the existing
program. After the complete SF Program is received, it is automatically compiled and enabled
(if compile is successful).

The drawback is that the [Load by Parts] function downloads all items in the specified group
(SFPGMs or SFSUBs) that exist in the off-line program. You cannot specify an individual SF
Program to download. This can result in the SF Program(s) being disabled for an extended
time if many SF Programs exist in the PLC Program. However, there is also a work-around
for this in the procedure described below:

Procedure to perform SF Program Online Edit via [Load by Parts] feature:

1. Save current PLC program to disk or use an existing offline copy of running program.

2. Open PLC program offline. Delete all SF Programs in SF group (SFPGMs or SFSUBs)

except the ones that need modification.

3. Modify SF Program Header, statements, and/or Error Handling settings. The number of

the SF Program must remain unchanged.

4. Connect to PLC and select [Load by Parts].

5. Choose ‘Load SF Programs’ or ‘Load SF Subroutines’ and press [OK].

2.6 Online Edits to Alarm and Loop Blocks

The CTI 2500 Series PLCs allow unrestricted changes to Analog Alarm and PID Loop control block
configurations while the PLC is in RUN mode.

The following changes to Alarms and Loops are permitted during an Online Edit:

 New Alarm/Loop block can be created on the condition that that unused S-Memory is available.

o Each Alarm block requires about 125 bytes of S-Memory

o Each Loop block requires about 175 bytes of S-Memory

 Existing Alarm/Loop block can be deleted.

 Existing Alarm/Loop configuration can be modified, enabled, or disabled.

All changes to Alarm/Loop control blocks take effect at the end of the PLC cycle when the change
was “accepted” (when [OK] button is pressed).

CTI 2500 Series CPU Programming Reference Manual V1.33 23

CHAPTER 3 RELAY LADDER LOGIC

3.1 Overview

This section describes the RLL Instruction Set supported by the 2500 Series controller. This set of
instructions can be used to develop and modify the control program executed by the controller. Errors
within the control program can result in inconsistent and unexpected behavior. It is important that the
operation of each instruction is understood and verified before using the program to control field devices.
In particular, the programmer must be aware of the instructions that retain state information and require
multiple PLC scans to complete. These instructions (such as TMR and CTR) must be assigned a unique
Reference Number corresponding to the memory type used.

The syntax and parameters for each instruction are provided along with a functional description of
operation and usage examples. Any restrictions in parameter fields (such as Reference Number, memory
type, and/or limits of constant values) are indicated in the description for each instruction.

Following is a list of the 2500 CPU RLL Instruction Set by functional category. A more detailed description
is included in the specified Section.

3.2 RLL Instruction Summary

 Relay Instructions

The primary function of RLL network is to control the state of one or more outputs based on input
conditions. Inputs and Outputs can represent actual field devices such as switches, relay contacts, and
relay coils or internal memory locations. The 2500 Series CPU supports the following instructions to
simulate relay logic operations.

24 CTI 2500 Series CPU Programming Reference Manual V1.33

Relay Instructions

Instruction Description Section

Open Contact
Evaluates TRUE and passes power when referenced bit is ON (1).
Evaluates FALSE and turns off power flow when bit is OFF (0).

3.4.1

Closed Contact
Evaluates TRUE and passes power when referenced bit is OFF (0).
Evaluates FALSE and turns off power flow when bit is ON (1).

3.4.2

NOT

Logical NOT Contact
Inverts power flow to opposite state.

3.4.3

^

One-Shot Contact
Passes power for a single scan when Input transitions OFF to ON.

3.4.4

Normal Coil
Sets referenced bit to state of power flow passed to coil
(i.e., turns ON when power flow is present).

3.4.5

NOT Coil
Sets referenced bit to an inverted or opposite state of power flow at coil
(i.e., turns OFF when power flow is present).

3.4.6

SET

Set Coil
Sets specified bit ON only when power flow is present. Remains
unchanged when power flow to coil is absent.

3.4.7

RST

Reset Coil
Sets specified bit OFF only when power flow is present. Remains
unchanged when power flow to coil is absent.

3.4.8

I

Immediate Open Contact
Performs an Immediate I/O Read on referenced bit and executes like
Normal Contact.

3.4.9

I

Immediate Closed Contact
Performs an Immediate I/O Read on referenced bit and executes like
NOT Contact.

3.4.10

I

Immediate Coil
Sets referenced bit to state of power flow at coil and executes an
Immediate I/O Write to update the digital output point.

3.4.11

I

Immediate NOT Coil
Sets referenced bit to inverted state of power flow at coil and executes
an Immediate I/O Write to update the digital output point.

3.4.12

SETI

Immediate Set Coil
Sets specified bit ON and performs an Immediate I/O Write to update
digital output point when power flow is present. Remains unchanged
when power flow to coil is absent.

3.4.13

RSTI

Immediate Reset Coil
Sets specified bit OFF and performs an Immediate I/O Write to update
digital output point only when power flow is present. Remains
unchanged when power flow to coil is absent.

3.4.14

The contact represents an input condition that is evaluated as ON or OFF. The condition to be monitored
is determined by the address assigned to the contact. A field device is designated by an image register
address, and an internal memory location is represented by assigning an address in one of the CPU-
memory areas such as control relays or variable (V) memory.

CTI 2500 Series CPU Programming Reference Manual V1.33 25

 Electro-mechanical Operations (Timer / Counter / Drum)

Timer / Counter / Drum

Instruction Description Section

CTR
Up Counter
Counts events to a preset value

3.5.1

DCAT
Discrete Control Alarm Timer
Provides a device transition timer between Open/Closed positions and
sets alarm when time preset exceeded

3.5.4

DRUM
Time Driven Electro-Mechanical Stepper Switch
Executes up to 16 steps that control up to 15 discrete outputs

3.5.8

EDRUM
Time/Event Driven Electro-Mechanical Stepper Switch
Executes like DRUM with feature to advance step by time and/or event

3.5.9

MCAT
Motor Control Alarm Timer
Device transition timer (similar to DCAT) with bi-directional motor control
inputs

3.5.5

MEDRM
Mega-EDRUM
Executes like EDRUM with added features of configurable number of
steps (16-128) and output coils (16-128)

3.5.12

MDRMD
Maskable Event Drum with Discrete Outputs
Executes like EDRUM with configurable control mask for outputs

3.5.10

MDRMW
Maskable Event Drum with Word Output
Executes like MDRMD with output written to internal memory location
instead of output coils

3.5.11

ONDC
On-Delay Coil
Sets specified coil ON (TRUE) when referenced Timer expires

3.5.6

OFFDC
Off-Delay Coil
Sets specified coil OFF (FALSE) when referenced Timer expires

3.5.7

TMR
On-Delay Timer - 100msec resolution
Event timer that sets output when complete

3.5.3

TMRF
On-Delay Fast Timer - 1msec resolution
Event timer that sets output when complete

3.5.3

UDC
Up-Down Counter
Computes difference between “Up” and “Down” events

3.5.2

26 CTI 2500 Series CPU Programming Reference Manual V1.33

 Relational and Comparison Operations

Relational and Comparison Operations

Instruction Description Section

CMP
Compare Two Signed Integers
Compares values for Less Than, Greater Than, or Equal

3.6.1

EQU
Compare Equal
Sets output when values are Equal

3.6.2

GEQ
Compare Greater or Equal
Sets output when value (A) Greater or Equal to value (B)

3.6.3

GTR
Compare Greater Than
Sets output when value (A) Greater Than value (B)

3.6.4

IMC
Indexed Matrix Compare
Compares 15 discrete points to predefined bit pattern and reports match.

3.6.8

LEQ
Compare Less or Equal
Sets output when value (A) Less Than or Equal to value (B)

3.6.5

LESS
Compare Less Than
Sets output when value (A) Less Than value (B)

3.6.6

NEQ
Compare Not Equal
Sets output when values are Not Equal

3.6.7

SMC
Scan Matrix Compare
Compare 15 discrete points to 16 different bit patterns and reports
matched pattern

3.6.9

STFE
Search Table for Equal
Finds next occurrence in table that is Equal to source word

3.6.10

STFN
Search Table for Not Equal
Finds next occurrence in table that is Not Equal to source word

3.6.11

CTI 2500 Series CPU Programming Reference Manual V1.33 27

 Bit Operations

Bit Operations

Instruction Description Section

BITC
Bit Clear
Sets designated bit position OFF (0)

3.7.1

BITS
Bit Set
Sets designated bit position ON (1)

3.7.2

BITP
Bit Pick
Indicates state of designated bit position

3.7.3

SHRB
Bit Shift Register
Shift Register uses discrete memory

3.7.4

SHRW
Word Shift Register
Shift Register uses V-Memory

3.7.5

WROT
Word Rotate
Performs Rotate Right operation on 4-bit segments within word

3.7.6

 Math Operations

Math Operations

Instruction Description Section

ABSV
Absolute Value
Computes absolute value of signed integer

3.8.1

ADD
Add
Computes Sum of 2 signed integers

3.8.2

CBD
Convert Binary to BCD
Converts integer to BCD equivalent

3.8.7

CDB
Convert BCD to Binary
Converts BCD to integer equivalent

3.8.8

DIV
Divide
Computes Quotient of long (32-bit) integer / signed integer

3.8.5

MUL
Multiply
Computes long (32-bit) Product of 2 signed integers

3.8.4

SQRT
Square Root
Computes integer SQRT of long (32-bit) integer

3.8.6

SUB
Subtract
Computes Difference between 2 signed integers

3.8.3

28 CTI 2500 Series CPU Programming Reference Manual V1.33

 Logic Operations

Logic Operations

Instruction Description Section

TAND
Table to Table AND
Logical AND corresponding bits in 2 tables

3.9.4

TCPL
Table Complement
Inverts state of each bit in table

3.9.7

TOR
Table to Table OR
Logical OR corresponding bits in 2 tables

3.9.5

TXOR
Table to Table XOR
Logical XOR corresponding bits in 2 tables

3.9.6

WAND
Word AND
Computes logical AND of 2 words

3.9.1

WOR
Word OR
Computes logical OR of 2 words

3.9.2

WTTA
Word to Table AND
Logical AND bits in source word with corresponding bits in word within table

3.9.8

WTTO
Word to Table OR
Logical OR bits in source word with corresponding bits in word within table

3.9.9

WTTX
Word to Table XOR
Logical XOR bits in source word with corresponding bits in word within table

3.9.10

WXOR
Word XOR
Computes logical XOR of 2 words

3.9.3

CTI 2500 Series CPU Programming Reference Manual V1.33 29

 Word / Table Move Operations

Word / Table Move Operations

Instruction Description Section

MIRFT
Move Image Register from Table
Copies table to discrete points

3.10.7

MIRTT
Move Image Register to Table
Copies discrete points to table

3.10.8

MIRW
Move Image Register to Word
Copies discrete points to word

3.10.5

MOVE
Move Element
Copies bytes, words, or long words

3.10.9

MOVW
Move Word
Copies up to 256 consecutive words

3.10.1

MWI
Move Word with Index
Copies designated number of words using array-type index

3.10.2

MWIR
Move Word to Image Register
Copies word to discrete points

3.10.6

MWFT
Move Word from Table
Copies word within table to designated location

3.10.3

MWTT
Move Word to Table
Copies word into designated word within table

3.10.4

TTOW
Table to Word
Copies designated word within table to another word

3.10.10

WTOT
Word to Table
Copies word to designated location within table

3.10.11

30 CTI 2500 Series CPU Programming Reference Manual V1.33

 Program Control Operations

Program Control Operations

Instruction Description Section

END
End
Absolute end of RLL program

3.11.1

ENDC
Conditional End
Terminates RLL program scan when TRUE

3.11.2

GTS
Go to Subroutine
Calls specified RLL Subroutine

3.11.6

JMP
Jump
Starts “Output-Freeze” program segment

3.11.3

JMPE
Jump End
Ends “Output-Freeze” program segment

3.11.3

LBL
Label
Ends program segment started by SKP

3.11.4

MCR
Master Control Relay
Starts “Output-Clear” program segment

3.11.5

MCRE
Master Control Relay End
Ends “Output-Clear” program segment

3.11.5

PGTS
Parameterized Go to Subroutine
Calls RLL Subroutine with parameter list

3.11.7

PGTSZ
Parameterized Go to Subroutine - Zero
Calls Subroutine with parameter list.
Zeroes all Discrete parameters when input is OFF.

3.11.8

PID
Call PID Loop
Calls designated “Fast Loop” for immediate execution

3.11.11

RTN
Return
Ends RLL Subroutine

3.11.10

SBR
Start of Subroutine
Starts program segment executed only when called by GTS, PGTS, or
PGTSZ instructions

3.11.9

SFPGM
Special Function Program
Calls SF Program for execution

3.11.12

SFSUB
SF Subroutine
Calls SF Subroutine

3.11.13

SKP
Skip-to-Label
Starts segment where control logic execution based on input state

3.11.4

TASK
Main RLL / Cyclic Task Delimiter
Starts main RLL/Cyclic task

3.11.14

CTI 2500 Series CPU Programming Reference Manual V1.33 31

 Special Operations

Special Operations

Instruction Description Section

DCMP
Date Compare
Compares RTC Date to memory locations

3.11.21

DSET
Date Set
Sets RTC Year, Month, Day, and Day of Week values

3.11.20

IORW
Immediate I/O Read-Write
Immediate I/O Read or Write operation

3.11.22

LDC
Load Data Constant
Loads memory address with positive integer

3.11.16

LDA
Load Address
Copies logical address to memory location

3.11.17

NOP No Operation 3.11.25

RSD
Read Slave Diagnostic
Copies Profibus-DP slave diagnostic data to designated memory area

3.11.23

TCMP
Time Compare
Compares RTC Time to memory locations

3.11.19

TEXT
Text Box
Documentation and/or user data area

3.11.24

TSET
Time Set
Sets RTC Hour, Minute, and Second values

3.11.18

32 CTI 2500 Series CPU Programming Reference Manual V1.33

3.3 RLL Memory Access

The following data elements are accessible from the RLL program:

Type Format RLL Access

K – Constant Memory Word (16 bit) Read Only

C – Control Relay Bit Read/Write

X – Discrete Input Bit Read Only

Y – Discrete Output Bit Read/Write

WX – Word Input Word (16 bit) Read Only

WY – Word Output Word (16 bit) Read/Write

DRUM – Drum
EDRUM – Event Drum

 MDRMD - Maskable Event Drum Discrete
MDRMW - Maskable Event Drum Word

Special Read/Write
(DSP/DCP/DSC/DCC)
Note: A write to DCP memory
does not change “Count Preset”
value. The DRUM uses the values
stored in L memory when the
drum is programmed.

PGTS Parameterized Go To Subroutine
Discrete Parameter Area (B)

Bit Read/Write

PGTS Word Parameter Area Word (16 bit) Read/Write

STW - Status Word Word (16 bit) Read Only
Note: STW1 is a local variable
within a given RLL task. It cannot
be accessed by a multi-word
move instruction.

TMR/TMRF – Timer
DCAT- Discrete Control Alarm Timer
UDC – Up Down Counter
TCP/TCC – Timer / Counter
CTR – Counter
MCAT – Motor Control Alarm Counter

Special Read/Write (TCP/TCC)

V – Variable Data Word (16 bit) Read/Write

CTI 2500 Series CPU Programming Reference Manual V1.33 33

3.4 Relay Instructions

This group of instructions simulates electro-mechanical devices such as timers, counters, and stepper
switches.

CAUTION:

I/O points addressed as X and Y memory types refer to the same Discrete Image Register.
X memory is used to specify field inputs and Y memory designates field outputs.

Therefore, contacts entered with the same X memory and Y memory reference number
 (i.e., X9 and Y9) read the same location in the Discrete Image Register.

Do not assign the same reference number to both input (X) and output (Y) contacts.

 Open Contact

The Open Contact is represented by the symbol.

This instruction operates like a field device such as a normally-open limit switch. When the switch
is closed, the referenced address is assigned “1” and it is evaluated as ON and passes power
flow to the next element in the network. When the switch is open, the referenced address is
assigned “0” and the contact is evaluated as OFF and does not pass power flow.

Open Contacts can be addressed to reference an individual point in the Discrete I/O Image
Register (Xn, Yn) or internal memory Control Relay (Cn). In addition, contacts can contain a “bit-
of-word” address that references a single bit within any word of readable PLC memory, such as
within the Word I/O Image Register (WXa.b, WYa.b), Variable Memory (Va.b), or Constant
Memory (Ka.b).

Examples:

The operation of the Open Contact is shown in Figure 2-1.

WX1.3X17 V10.3

34 CTI 2500 Series CPU Programming Reference Manual V1.33

 Closed Contact

The Closed Contact is represented by the symbol.

This instruction operates like a field device such as a normally-closed switch (one that conducts
current when it is not pressed). It is evaluated as ON and passes power flow when the referenced
address is set to “0”. When the referenced address is ‘1”, it is evaluated as OFF and power flow is
not passed.

Closed Contacts can be addressed to reference a individual point in the Discrete I/O Image
Register (Xn, Yn) or internal memory Control Relay (Cn). In addition, contacts can contain a “bit-
of-word” address that references a single bit within any word of readable PLC memory, such as
within the Word I/O Image Register (WXa.b, WYa.b), Variable Memory (Va.b), or Constant
Memory (Ka.b).

Examples:

The operation of the Closed Contact is shown in Figure 2-1.

Input

X19

ON

Switch

SW19

X17

X18

X19

X22

X21

X20

Image

Register

Closed

Y25

Y27X19

X19

1

When Switch SW19 is closed, the input point addressed as X19 turns ON and the

corresponding Input Image Register position is set to “1”.

When RLL executes, the X19 Normal Contact is ON and passes power flow to

Output Y25. The X19 Logical NOT Contact is OFF and does not pass power flow.

Figure 3-1 Operation of RLL Contacts

WY2.15Y65 K1.12

CTI 2500 Series CPU Programming Reference Manual V1.33 35

 Logical NOT Contact

The Logical NOT Contact is represented by the
NOTNOT

 symbol.

This instruction inverts power flow of the RLL network. In other words, the state of power flow at the
contact output is opposite of the state at the contact input.

The Logical NOT Contact instruction is often used to simplify logic since it allows the programmer to
think in terms of “Positive-TRUE” logic.

is functionally equivalent to

X1 X2

NOTNOT

Y9

X1

X2

Y9

Figure 3-2 Operation of Logical NOT Contact

36 CTI 2500 Series CPU Programming Reference Manual V1.33

 One-Shot Contact

The One-Shot Contact is represented by the
^

 symbol.

This instruction passes power flow to its output for exactly one scan when an OFF-to-ON transition is
detected at its input. Power flow at its input must transition OFF for at least one PLC scan before the
contact will detect another TRUE condition. When no power flow is present at the One-Shot input, the
output is always OFF.

Each One-Shot Contact must be assigned a unique number for proper operation. The number of One-
Shots available is dependent on the amount of “One-Shot” memory assigned in the PLC Memory
configuration.

CAUTION:

Make sure that the Reference Number assigned to each One-Shot Contact instruction is
used only once in the PLC program. Unpredictable controller operation can occur if

the same number is assigned to more than one One-Shot Contact.

 Normal Coil

The Normal Coil is represented by the symbol.

This instruction operates like a field device such as a relay coil that energizes when power is
applied. When power flow is present, the referenced address is set to “1” and the coil turns ON.
When power flow is not present, the referenced address is set to “0” and the coil turns OFF.

Normal Coils can be addressed to reference a individual output point in the Discrete I/O Image
Register (Yn) or internal memory Control Relay (Cn). In addition, coils can contain a “bit-of-word”
address that references a single bit within any word of writeable PLC memory, such as an Output
Word in the Word I/O Image Register (WYa.b) or Variable Memory (Va.b).

Examples:

The operation of the Normal Coil is shown in Figure 2-3.

Y33 WY10.4 C21

CTI 2500 Series CPU Programming Reference Manual V1.33 37

 NOT Coil

The NOT Coil is represented by the symbol.

This instruction is used to turn a specific bit OFF based on certain input conditions. This coil is set
OFF and the referenced address is set to “0” when the logic rung passes power flow to this coil.
When power flow is not present, the referenced address is assigned ‘1” and the coil is set ON.

NOT Coils can be addressed to reference a individual output point in the Discrete I/O Image
Register (Yn) or internal memory Control Relay (Cn). In addition, coils can contain a “bit-of-word”
address that references a single bit within any word of writeable PLC memory, such as an Output
Word in the Word I/O Image Register (WYa.b) or Variable Memory (Va.b).

Examples:

The operation of the NOT Coil is shown in Figure 2-3.

When the memory location C20 is ON, the Normal Contact C20 passes

power flow. The Logical NOT Coil turns ON, sets the corresponding Image

Register point to “0” and Coil Y35 turns OFF.

The Logical NOT Contact C20 does not pass power flow. The

Normal Coil turns OFF, sets the Output Image Register point

to “0” and Coil Y38 turns OFF.

Output

Y35

OFF

Y34

Y35

Y36

Y39

Y38

Y37

Image

Register

Output

Y38

OFF

Y35

Y38C20

C20

0

0

Figure 3-3 Operation of RLL Coils

Y25 WY2.12 V100.16

38 CTI 2500 Series CPU Programming Reference Manual V1.33

 Set Coil

The Set Coil is represented by the
SET

 symbol.

This instruction operates like a field device circuit that energizing a latching relay coil. When
power flow is present, the referenced address is set to “1” and the coil turns ON. When power
flow is not present, the coil state remains unchanged.

The Set Coil instruction never sets its referenced address to “0”. The Reset Coil instruction must
be used for that purpose.

Set Coils can be addressed to reference a individual output point in the Discrete I/O Image
Register (Yn) or internal memory Control Relay (Cn). In addition, coils can contain a “bit-of-word”
address that references a single bit within any word of writeable PLC memory, such as an Output
Word in the Word I/O Image Register (WYa.b) or Variable Memory (Va.b).

Examples:

 Reset Coil

The Reset Coil is represented by the
RST

 symbol.

This instruction operates like a field device circuit that resets a latching relay coil. When power
flow is present, the referenced address is set to “0” and the coil turns OFF. When power flow is
not present, the coil state remains unchanged.

The Reset Coil instruction never sets its referenced address to “1”. The Set Coil instruction must
be used for that purpose.

Reset Coils can be addressed to reference a individual output point in the Discrete I/O Image
Register (Yn) or internal memory Control Relay (Cn). In addition, coils can contain a “bit-of-word”
address that references a single bit within any word of writeable PLC memory, such as an Output
Word in the Word I/O Image Register (WYa.b) or Variable Memory (Va.b).

Examples:

SET

Y46

SET

C34

SET

V12.3

RST

Y29

RST

WY16.8

RST

V12.16

CTI 2500 Series CPU Programming Reference Manual V1.33 39

 Immediate Open Contact

The Immediate Open Contact is represented by the
I

 symbol.

This instruction operates exactly like the Open Contact instruction except the contact state is
updated from the I/O module at the time the instruction is executed The state of the referenced bit
in the Digital Image Register (as read during the previous Normal I/O cycle).is not updated.

The address used with this instruction must correspond to a Digital Input (Xn) point configured for
the Local Base (Base 0) or Profibus network station.

Example:

 Immediate Closed Contact

The Immediate Closed Contact is represented by the
I

 symbol.

This instruction operates exactly like the Closed Contact instruction except the contact state is
updated from the I/O module at the time the instruction is executed The state of the referenced bit
in the Digital Image Register (as read during the previous Normal I/O cycle).is not updated.

The address used with this instruction must correspond to a Digital Input (Xn) point configured for
the Local Base (Base 0) or Profibus network station.

Example:

 Immediate Coil

The Immediate Coil is represented by the
I

 symbol.

This instruction operates exactly like the Normal Coil instruction. Additionally, an I/O module
update is performed at the time the instruction is executed to output the coil state. The state of
the referenced bit in the Discrete Image Register is also updated.

The address used with this instruction must correspond to a Digital Output (Yn) point configured
for the Local Base (Base 0) or Profibus network station.

Example:

I

X33

I

X26

Y25

I

40 CTI 2500 Series CPU Programming Reference Manual V1.33

 Immediate NOT Coil

The Immediate NOT Coil is represented by the
I

 symbol.

This instruction operates exactly like the NOT Coil instruction. Additionally, an I/O module update
is performed at the time the instruction is executed to output the coil state. The state of the
referenced bit in the Discrete Image Register is also updated.

The address used with this instruction must correspond to a Digital Output (Yn) point configured
for the Local Base (Base 0) or Profibus network station.

Example:

 Immediate Set Coil

The Immediate Set Coil is represented by the
SETI

 symbol.

This instruction operates exactly like the Set Coil instruction. Additionally, an I/O module update
is performed at the time the instruction is executed to output the coil state. The state of the
referenced bit in the Discrete Image Register is also updated.

The address used with this instruction must correspond to a Digital Output (Yn) point configured
for the Local Base (Base 0) or Profibus network station.

Example:

 Immediate Reset Coil

The Immediate Reset Coil is represented by the
RSTI

 symbol.

This instruction operates exactly like the Reset Coil instruction. Additionally, an I/O module
update is performed at the time the instruction is executed to output the coil state. The state of
the referenced bit in the Discrete Image Register is also updated.

The address used with this instruction must correspond to a Digital Output (Yn) point configured
for the Local Base (Base 0) or Profibus network station.

Example:

I

Y43

SETI

Y28

Y12

RSTI

CTI 2500 Series CPU Programming Reference Manual V1.33 41

3.5 Electro-mechanical Instructions (Timer/Counter/Drum)

 Counter (CTR)

The CTR instruction counts the number of pulses (OFF-to-ON transitions) up to Preset value. Counting
stops and Output turns ON when number of pulses equals Preset value.

Counter Variables
 n = Counter Reference Number
 TCPn – Counter Preset (Max Count)
 TCCn – Counter Current Value

Description of Operation

1. When Enable Input is OFF, the Counter is reset. TCC is set to zero. Output is OFF unless TCP
value is set to zero. In that case, Output is ON. See CAUTION below.

2. When Enable Input is ON, the Counter increments by one each time the Count Input transitions
OFF-to-ON. The Counter will not increment past the specified PRESET value.

3. When TCC equals zero or PRESET, the Output turns ON.

UP COUNTER

TC: Counter Reference Number

(see Notes)

PRESET: Max number of pulses to be

counted (0-32767)

STATUS: PROT / UNPROT

Flag used by HMI devices

to prohibit or allow changes to

Counter variables

Enable

OutputCount

Input States
Function Output

Enable Count

Don’t
Care

TCC = TCP = 0 Special case when TCP = 0
See CAUTION below.

ON

OFF Don’t Care CTR disabled (TCC=0) OFF

ON OFF-to-ON
transition

Pulse detected
IF (TCC<TCP)
 TCC increments by 1

OFF

ON Don’t Care IF (TCC = TCP) ON

42 CTI 2500 Series CPU Programming Reference Manual V1.33

CAUTION:

The CTR instruction Output turns ON when Counter Preset (TCP) and Counter Current (TCC)
values are both set to zero REGARDLESS of state of the Enable input. This replicates the

operation of the CTR instruction in the Siemens SIMATIC® 505 controller.

Note:

The Reference Number assigned to the instruction box must be unique for all Timers and Counters
entered in the PLC program. Do NOT use the same Reference Number more than once for any T/C

instruction (TMR, TMRF, CTR, UDC, DCAT, MCAT, ONDC, OFFDC).

The number of available Timers and Counters is dependent on the amount of T/C Memory
 assigned in PLC Memory Configuration. Timer variables TCP (Timer Preset) and TCC
 (Timer Current) are maintained across power outage when ‘Battery Good’ LED is ON.

 If these variables are changed by RLL instructions or HMI (if ‘Status = Unprotected’), the new
values will not be retained if the original program is downloaded again to PLC.

 Related instructions: UDC

CTI 2500 Series CPU Programming Reference Manual V1.33 43

 Up-Down Counter (UDC)

The UDC instruction acts as a bidirectional counter and computes the difference between the number of
pulses (OFF-to-ON transitions) detected as “Up” events and “Down” events.

Counter Variables
 n = Counter Reference Number
 TCPn – Counter Preset (Max Count)
 TCCn – Counter Current Value

Description of Operation

1. When Enable Input is OFF, the Counter is reset. TCC is set to zero.

2. When Enable Input is ON, the Counter increments by one each time the Up Input transitions
OFF-to-ON. The Counter will not increment past the specified PRESET value. Therefore, when
TCC = TCP, the UDC will only count Down pulses

3. When Enable Input is ON, the Counter decrements by one each time the Down Input
transitions OFF-to-ON. The Counter value will not decrement less than zero. Therefore, when
TCC = 0, the UDC will only count Up pulses.

4. If TCP is changed to a value less than TCC, TCC is also changed so the TCC = TCP.

5. The Counter value does not change if both Up and Down pulses are detected during the same
PLC scan.

6. When TCC equals zero or PRESET, the Output turns ON.

When TCC equals zero, the Z (Zero) output turns ON.

 These outputs are set in all cases – regardless of whether Enable Input is ON or OFF.

44 CTI 2500 Series CPU Programming Reference Manual V1.33

Input States
Function Output Zero

Enable Up Down

OFF Don’t Care Don’t Care UDC disabled.
TCC set to zero.

Depends on
TCC value

Depends on
TCC value

ON OFF-to-ON
transition

Don’t Care Up-Event detected
IF (TCC < TCP)
 TCC increments by one

Depends on
TCC value

Depends on
TCC value

Don’t Care Don’t’ Care Don’t Care IF (TCC = TCP) ON ON

ON Don’t Care OFF-to-ON
transition

Down-Event detected
IF (TCC > 0)
 TCC decrements by one

Depends on
TCC value

Depends on
TCC value

Don’t Care Don’t Care Don’t Care IF (TCC = 0) ON ON

Notes:

The Reference Number assigned to the instruction box must be unique for all Timers and Counters
entered in the PLC program. Do NOT use the same Reference Number more than once for any T/C

instruction (TMR, TMRF, CTR, UDC, DCAT, MCAT, ONDC, OFFDC).

The number of available Timers and Counters is dependent on the amount of T/C Memory
 assigned in PLC Memory Configuration. Timer variables TCP (Timer Preset) and TCC
 (Timer Current) are maintained across power outage when ‘Battery Good’ LED is ON.

 If these variables are changed by RLL instructions or HMI (if ‘Status = Unprotected’)’, the new
values will not be retained if the original program is downloaded again to PLC..

 Related instructions: CTR

CTI 2500 Series CPU Programming Reference Manual V1.33 45

 On-Delay Timer (TMR / TMRF)

The TMR and TMRF instructions are used to execute time-based events within the RLL program. The
TMR (Slow Timer) and TMRF (Fast Timer) instructions are identical except for the time base as shown
below:

 TMR has time base of 100 msec (0.1 sec) with range of 0.1 – 3276.7 seconds

 TMRF has time base of 1 msec (0.001 sec) with range of 0.001 – 32.767 seconds

TIMER

TC: Timer Reference Number

(see Notes)

PRESET: Number of “time-base”

increments to be timed

(0-32767)

STATUS: PROT / UNPROT

Flag used by HMI devices

to prohibit or allow changes to

Timer variables

Enable

OutputStart

Timer Variables
 n = Timer Reference Number
 TCPn – Timer Preset (PRESET)
 TCCn – Timer Current Value

Description of Operation

1. When Enable Input is OFF, the Timer is reset to PRESET value and Output is OFF.

2. When Enable Input is ON, the Timer is enabled but does not advance when Start Input is OFF.

3. When Start Input turns ON, The Timer begins at PRESET and advances toward zero. The
“elapsed time” is decremented each PLC scan the Timer is enabled and Start is ON.

4. If the Start Input transitions OFF (with Enable Input ON), the Timer stops and holds its current
value. This state is held until either Start Input transitions ON (timing resumes) or Enable Input
turns OFF (timer reset).

5. When Timer reaches zero, Output is turned ON and remains ON until the Enable Input turns
OFF to reset the Timer.

46 CTI 2500 Series CPU Programming Reference Manual V1.33

Input States Timing
Complete

Function Output
Enable Start

OFF Don’t
Care

Don’t
Care

Timer reset (TCC=TCP) OFF

ON OFF NO Timer enabled but not running.
Timer value (TCC) holds constant.

OFF

ON Don’t
Care

YES Timing complete (TCC = 0) ON

Note:

The Reference Number assigned to the instruction box must be unique for all Timers and Counters
entered in the PLC program. Do NOT use the same Reference Number more than once for any T/C

instruction (TMR, TMRF, CTR, UDC, DCAT, MCAT, ONDC, OFFDC).

The number of available Timers and Counters is dependent on the amount of T/C Memory
 assigned in PLC Memory Configuration. Timer variables TCP (Timer Preset) and TCC
 (Timer Current) are maintained across power outage when ‘Battery Good’ LED is ON.

 If these variables are changed by RLL instructions or HMI (if ‘Status = Unprotected’)’, the new
values will not be retained if the original program is downloaded again to PLC.

 Related instructions: DCAT, MCAT, ONDC, OFFDC

CTI 2500 Series CPU Programming Reference Manual V1.33 47

 Discrete Control Alarm Timer (DCAT)

The DCAT instruction provides timing function for a device transitioning between Open and Closed
positions and sets the appropriate Alarm if transition exceeds Timer Preset.

This function has a single Input that determines the direction that the device is being driven. The Output
state is always set equal to the Input and can be used to control the device. The Timer Preset (DELAY)
sets the maximum time to transition between Open/Close positions.

DCAT

DELAY: Time allowed for device to Open

or Close (0.,1-3276.7 sec)

CA: Closed Alarm - Turns ON when

Open-to-Close time out detected

TC: Timer Reference Number

(see Notes)

OA: Open Alarm - Turns ON when

Close-to-Open time out detected

CF: Closed Feedback - Turns ON

when device is in Closed position

OF: Open Feedback - Turns ON

when device Is in Open position

OutputOpen/Close

Open = ON

Close = OFF

Memory Types:

OF / CF:

(X, Y, C, B)

OA / CA:

(Y, C, B)

Timer Variables
 n = Timer Reference Number
 TCPn – Timer Preset (DELAY)
 TCCn – Timer Current Value

Description of Operation

Close-to-Open Operation (Open/Close Input = ON)

1. When Input transitions OFF-to-ON, TCCn is set to DELAY (Preset). Both alarms are turned
OFF and DCAT Output turns ON. Timing starts.

2. Timing continues until Open position sensor (OF) turns ON or timer expires.

3. If Open sensor (OF) turns ON before Timer expires, DELAY is set to zero and alarms remain
OFF. If Open sensor (OF) turns OFF while Input is still ON, Open Alarm (OA) turns ON.

4. If timer expires when Open sensor (OF) is OFF, Open Alarm (OA) turns ON. Alarm OA turns
OFF if Open sensor (OF) turns ON after timer expires.

5. If both Open sensor (OF) and Close sensor (CF) are ON simultaneously, timer DELAY is set to
zero and both alarms turn ON.

48 CTI 2500 Series CPU Programming Reference Manual V1.33

Open-to-Close Operation (Open/Close Input = OFF)

1. When Input transitions ON-to-OFF, TCCn is set to DELAY (Preset). Both alarms are turned
OFF and DCAT Output turns OFF. Timing starts.

2. Timing continues until Close position sensor (CF) turns ON or timer expires.

3. If Close sensor (CF) turns ON before Timer expires, DELAY is set to zero and alarms remain
OFF. If Close sensor (CF) turns OFF while Input is still ON, Close Alarm (OA) turns ON.

4. If timer expires when Close sensor (OF) is OFF, Close Alarm (CA) turns ON. Alarm CA turns
OFF if Close sensor (CF) turns ON after timer expires..

5. If both Open sensor (OF) and Close sensor (CF) are ON simultaneously, timer DELAY is set to
zero and both alarms turn ON.

Note:

The Reference Number assigned to the instruction box must be unique for all Timers and Counters
entered in the PLC program. Do NOT use the same Reference Number more than once for any T/C

instruction (TMR, TMRF, CTR, UDC, DCAT, MCAT, ONDC, OFFDC).

The number of available Timers and Counters is dependent on the amount of T/C Memory
 assigned in PLC Memory Configuration. Timer variables TCP (Timer Preset) and TCC
 (Timer Current) are maintained across power outage when ‘Battery Good’ LED is ON.

 If these variables are changed by RLL instructions or HMI (if ‘Status = Unprotected’)’, the new
values will not be retained if the original program is downloaded again to PLC.

 Related instructions: TMR, TMRF, MCAT, ONDC, OFFDC

Open/
Close

Position Sensors
Timer Operation

Alarms DCAT
Output OF CF OA CA

ON OFF Don’t care Timer active OFF OFF ON

ON ON OFF Timer reset OFF OFF ON

ON OFF Don’t care Timer expired ON OFF ON

ON ON ON Invalid state – Timer reset ON ON ON

OFF Don’t care OFF Timer active OFF OFF OFF

OFF OFF ON Timer reset OFF OFF OFF

OFF Don’t care OFF Timer expired OFF ON OFF

OFF ON ON Invalid state – Timer reset ON ON OFF

CTI 2500 Series CPU Programming Reference Manual V1.33 49

 Motor Control Alarm Timer (MCAT)

The MCAT instruction provides timing function for a device transitioning between Open and Closed
positions and sets the appropriate Alarm if transition exceeds Timer Preset. The MCAT function is similar
to the DCAT instruction but includes additional features for bi-directional motor control.

This function has separate inputs for control of Open, Close, and Stop states. The Stop Input overrides
either Open/Close and prevents motor from being driven in either direction. The Output state is always
ON except during an alarm or error condition. The Timer Preset (DELAY) sets the maximum time to
transition between Open/Close positions.

Memory Types:

OF / CF:

(X, Y, C, B)

OA / CA:

(Y, C, B)

OO / CO:

(Y, C, B)

OutputOpen

Close

Stop

MCAT

DELAY: Time allowed for device to Open

or Close (0.,1-3276.7 sec)

CA: Closed Alarm - Turns ON when

Open-to-Close time out detected

TC: Timer Reference Number

(see Notes)

OA: Open Alarm - Turns ON when

Close-to-Open time out detected

CF: Closed Feedback - Turns ON

when device is in Closed position

OF: Open Feedback - Turns ON

when device Is in Open position

CO: Close Output - Controls motor

operation in Close direction

OO: Open Output - Controls motor

operation in Open direction

Timer Variables
 n = Timer Reference Number
 TCPn – Timer Preset (DELAY)
 TCCn – Timer Current Value

50 CTI 2500 Series CPU Programming Reference Manual V1.33

Description of Operation

Close-to-Open Operation (Open Command Input = ON)

1. When Open Input transitions OFF-to-ON (and Close/Stop Inputs are OFF), control in Open
direction is triggered. Open Output (OO) turns ON, both alarms (OA/CA) are turned OFF, and
Timer starts.

2. Open Output (OO) is “latched” and remains ON and timing continues until one of the following
events is detected:

a. Open Sensor (OF) turns ON before Timer expires while Close Sensor (CF) remains OFF.
DELAY is set to zero and alarms remain OFF. If Open sensor (OF) subsequently turns
OFF before Close Input turns ON, Open Alarm (OA) turns ON.

b. Stop Input turns ON.

Open Output (OO) and both alarms (OA/CA) turn OFF. Timer stops (TCC stays
constant). If Stop Input turns OFF while Open Input is still ON, the action is treated like a
new Close-to-Open operation. The Timer starts timing at Preset (DELAY).

c. Timer expires before Open Sensor (OF) turns ON.
The Open Output (OO) turns OFF and Open Alarm (OA) turns ON.

d. Close Input turns ON (after Open Input has turned OFF).
(See description of Open-to-Close Operation below)

Open-to-Close Operation (Close Command Input = ON)

1. When Close Input transitions OFF-to-ON (and Open/Stop Inputs are OFF), control in Close
direction is triggered. Close Output (CO) turns ON, both alarms (OA/CA) are turned OFF, and
Timer starts.

2. Close Output (CO) is “latched” and remains ON and timing continues until one of the following
events is detected:

a. Close Sensor (CF) turns ON before Timer expires (while Open Sensor (OF) is OFF).
DELAY is set to zero and alarms remain OFF. If Close Sensor (CF) subsequently turns
OFF before Open Input turns ON, Close Alarm (CA) turns ON.

b. Stop Input turns ON.
Close Output (CO) and both alarms (OA/CA) turn OFF.
Timer stops (TCC stays constant). If Stop Input turns OFF while Close Input is still ON,
the action is treated like a new Open-to-Close operation. The Timer starts timing at
Preset (DELAY).

c. Timer expires before Close Sensor (CF) turns ON.
The Close Output (CO) turns OFF and Close Alarm (CA) turns ON.

d. Open Input turns ON (after Close Input has turned OFF).
(See description of Close-to-Open Operation above)

CTI 2500 Series CPU Programming Reference Manual V1.33 51

Special Case Conditions

The following events apply to both Open and Close operations:

1. Open Input and Close Input are turned ON simultaneously.
This condition is treated like Stop Input is ON (see description in item (b) above). If either input
turns OFF while the other is ON, a new operation is initiated in the direction of the positive
input.

2. Open Sensor (OF) and Close Sensor (CF) inputs are turned ON simultaneously.
This is considered an error condition. Both outputs (OO/CO) turn OFF, both alarms (OA/CA)
turn ON, and MCAT Output turns OFF. The error condition is cleared only when one of the
MCAT Inputs (Open/Close/Stop) changes state.

The MCAT execution is based on the states of the box inputs (Open/Close/Stop) and position
sensors (OF/CF). The following table lists the order of execution. Each condition is evaluated in the
order listed, and the specified actions are performed if TRUE. All remaining conditions are then
ignored.

Evt
No.

Inputs
Position
Sensors

MCAT Operation
Control
Outputs

Alarms
MCAT
Output

 Open Close Stop OF CF OO CO OA CA

1 ---- ---- ---- ON ON Invalid state – Error.
Timer reset.

OFF OFF ON ON OFF

2 ---- ---- ON ---- ---- Operation cancelled
Timer stops.

OFF OFF OFF OFF ON

ON ON ---- ---- ----

3 ON OFF OFF OFF ---- Open operation initiated.
Timer starts.

ON OFF OFF OFF ON

4 ---- OFF OFF OFF OFF Open operation (Event 3)
in progress. Timer active.

ON OFF OFF OFF ON

5 ---- OFF OFF ON OFF Open operation (Event 3)
complete. Timer resets.

OFF OFF OFF OFF ON

6 ---- OFF OFF OFF ---- Timer expires. Open
operation (Event 3)
completes with error.

OFF OFF ON OFF OFF

7 OFF ON OFF ---- OFF Close operation initiated.
Timer starts.

OFF ON OFF OFF ON

8 OFF ---- OFF OFF OFF Close operation (Event 7)
in progress. Timer active.

OFF ON OFF OFF ON

9 OFF ---- OFF OFF ON Open operation (Event 7)
complete. Timer resets.

OFF OFF OFF OFF ON

10 ---- OFF OFF OFF ---- Timer expires. Open
operation (Event 7)
completes with error.

OFF OFF OFF ON OFF

11 ---- ---- ---- ---- ---- No action required. OFF OFF OFF OFF ON

52 CTI 2500 Series CPU Programming Reference Manual V1.33

Note:

The Reference Number assigned to the instruction box must be unique for all Timers and Counters
entered in the PLC program. Do NOT use the same Reference Number more than once for any T/C

instruction (TMR, TMRF, CTR, UDC, DCAT, MCAT, ONDC, OFFDC).

The number of available Timers and Counters is dependent on the amount of T/C Memory
 assigned in PLC Memory Configuration. Timer variables TCP (Timer Preset) and TCC
 (Timer Current) are maintained across power outage when ‘Battery Good’ LED is ON.

 If these variables are changed by RLL instructions or HMI (if ‘Status = Unprotected’)’, the new
values will not be retained if the original program is downloaded again to PLC.

Related instructions: TMR, TMRF, DCAT, ONDC, OFFDC

CTI 2500 Series CPU Programming Reference Manual V1.33 53

 On-Delay Coil (ONDC)

ONDC is an output box instruction used to activate (turn ON) a coil after a designated time period. The
time delay interval has a time-base of 100 msec and can be specified within the limits of a standard Timer
(0 – 3276.7 sec). OFFDC is a complementary Off-Delay Coil instruction.

Note:

This instruction is available only when using 2500 Series CPU firmware V6.18 or later
and 505 WorkShop V4.60 or later as PLC programming software.

ON DELAY COIL

TC: Timer Reference Number

(see Notes)

PRESET: Number of “time-base”

increments to be timed

(0-32767)

STATUS: PROT / UNPROT

Flag used by HMI devices

to prohibit or allow changes to

Timer variables

Input

COIL: Bit address to activate

following time delay (Y, C, B)

Timer Variables
 n = Timer Reference Number
 TCPn – Timer Preset (PRESET)
 TCCn – Timer Current Value

Description of Operation

1. When Input is OFF, the Timer is reset to PRESET value and Coil address is set OFF.

2. When Input turns ON, The Timer begins at PRESET and advances toward zero. The “elapsed
time” is decremented each PLC scan the Input stays ON. During this “time delay” period, the
Coil is OFF.

3. When Timer completes (times down to zero), Coil address turns ON and remains ON as long
as the Input stays ON.

54 CTI 2500 Series CPU Programming Reference Manual V1.33

Input
Timing

Complete
Function Coil

OFF Don’t
Care

Timer reset (TCC=TCP) OFF

ON NO Timer active (TCC decrements) OFF

ON YES Timing complete (TCC = 0) ON

Note:

The Reference Number assigned to the instruction box must be unique for all Timers and Counters
entered in the PLC program. Do NOT use the same Reference Number more than once for any T/C

instruction (TMR, TMRF, CTR, UDC, DCAT, MCAT, ONDC, OFFDC).

The number of available Timers and Counters is dependent on the amount of T/C Memory
 assigned in PLC Memory Configuration. Timer variables TCP (Timer Preset) and TCC
 (Timer Current) are maintained across power outage when ‘Battery Good’ LED is ON.

 If these variables are changed by RLL instructions or HMI (if ‘Status = Unprotected’)’, the new
values will not be retained if the original program is downloaded again to PLC.

 Related instructions: TMR, TMRF, DCAT, MCAT, ONDC, OFFDC

CTI 2500 Series CPU Programming Reference Manual V1.33 55

 Off-Delay Coil (OFFDC)

OFFDC is an output box instruction used to deactivate (turn OFF) a coil after a designated time period.
The time delay interval has a time-base of 100 msec and can be specified within the limits of a standard
Timer (0 – 3276.7 sec). ONDC is a complementary On-Delay Coil instruction.

Note:

This instruction is available only when using 2500 Series CPU firmware V6.18 or later
and 505 WorkShop V4.60 or later as PLC programming software.

OFF DELAY COIL

TC: Timer Reference Number

(see Notes)

PRESET: Number of “time-base”

increments to be timed

(0-32767)

STATUS: PROT / UNPROT

Flag used by HMI devices

to prohibit or allow changes to

Timer variables

Input

COIL: Bit address to deactivate

following time delay (Y, C, B)

Timer Variables
 n = Timer Reference Number
 TCPn – Timer Preset (PRESET)
 TCCn – Timer Current Value

CAUTION:

The OFFDC instruction is unique in that it is enabled by an ON-to-OFF transition of the
 the Input contact and operates when the Input is FALSE. Keep this in consideration

when using this instruction in your RLL program.

56 CTI 2500 Series CPU Programming Reference Manual V1.33

Description of Operation

1. When Input is ON, the Timer is reset to PRESET value and Coil address is ON.

2. When Input turns OFF, The Timer begins at PRESET and advances toward zero. The “elapsed
time” is decremented each PLC scan the Input stays ON. During this “time delay” period, the
Coil is ON.

3. When Timer completes (times down to zero), Coil address turns OFF and remains OFF as long
as the Input stays OFF.

Input
Timing

Complete
Function Coil

ON Don’t

Care

Timer reset (TCC=TCP) OFF

OFF NO Timer active (TCC decrements) ON

OFF YES Timing complete (TCC = 0) OFF

Note:

The Reference Number assigned to the instruction box must be unique for all Timers and Counters
entered in the PLC program. Do NOT use the same Reference Number more than once for any T/C

instruction (TMR, TMRF, CTR, UDC, DCAT, MCAT, ONDC, OFFDC).

The number of available Timers and Counters is dependent on the amount of T/C Memory
 assigned in PLC Memory Configuration. Timer variables TCP (Timer Preset) and TCC
 (Timer Current) are maintained across power outage when ‘Battery Good’ LED is ON.

 If these variables are changed by RLL instructions or HMI (if ‘Status = Unprotected’)’, the new
values will not be retained if the original program is downloaded again to PLC.

 Related instructions: TMR, TMRF, DCAT, MCAT, ONDC, OFFDC

CTI 2500 Series CPU Programming Reference Manual V1.33 57

 DRUM (Time-Based)

The DRUM instruction operation is similar to a time-driven stepper switch. The DRUM can be
programmed to execute 16 different “steps” that control up to 15 output coils. The duration of each step is
a multiple of the time-base (SEC/CNT) specified for the instruction.

TIME DRIVEN DRUM

 Addresses of Output Coils (C, Y, B or Blank)

C C C Y Y Y Y C C Y Y Y C Y Y

1 1 1 3 3 3 4 3 4 4 4 5 1 5 5

2 2 2 7 8 9 0 2 2 8 9 0 0 4 5

3 4 5 6 3 2

3

 STP CNT STP: Step Number (1-16)

CNT: Number of Counts/Step (0-32767)

 1 25 1 0 1 1 0 0 0 1 0 0 1 1 0 0 0

 2 10 1 0 0 0 1 1 1 0 0 0 0 1 1 0 1

 3 5 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0

 4 12 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1

 . . .

 . . .

 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Output Coil Mask (0 = OFF / 1 = ON)

PRESET: Step where Drum starts executing (1-16)

DRUM: Drum Reference Number (see Notes)

SEC/CNT: Time interval for each Count (0-32.767 sec)

Start

Enable

Output

Drum Variables
 n = Drum Reference Number
 DSPn – Drum Step Preset (PRESET)
 DSCn – Drum Step Current (Step that is executing)
 DCCn – Drum Current Count (Counts remaining for Current Step)

Time Interval Calculation using Counts/Step (CNT)

Time duration of a step is determined by Counts/Step (CNT) value.

 Time Interval = SEC/CNT * CNT/STP

 where: SEC/CNT is the time base for the Drum
 CNT/STP is the time-base multiplier for the step

 Example 1: SEC/CNT is set to 100 msec (0.100 sec) and CNT/STP = 25

 Time Interval = 0.100 * 25 = 2.5 seconds

 Example 2: SEC/CNT is set to 0 and CNT/STP = 10

 When SEC/CNT = 0, time-base = 1 PLC scan-time
 Time Interval = 10 scans

58 CTI 2500 Series CPU Programming Reference Manual V1.33

Description of Operation

1. When Enable Input is OFF, the Drum is held at PRESET Step. The Output Coils are driven to
states specified for this step. Output Coil Address = C0 represents no coil.

2. When Enable Input is ON, the Drum is enabled but does not advance when Start Input is OFF.

3. When Start Input turns ON, The Drum starts at PRESET Step and remains at this step until
Count (DCC) decrements to zero. The Drum then advances to next step and Output Coils are
driven to states as specified in the Output Coil Mask for that step.

4. This action continues until last configured step is completed. At that point, the Drum Output is
turned ON. The “last configured step” is defined as the highest numbered step with a non-zero
CNT/STP value. The Output Coils are controlled by this step and Drum Output remains ON
until the Enable Input turns OFF to reset the Drum.

5. Steps programmed with CNT/STP = 0 are not executed.

6. If the Start Input transitions OFF (with Enable Input ON), the Drum stays at its current step and
DCC stops decrementing. This position is held until either Start Input transitions ON or Enable
Input turns OFF.

Inputs Drum
Completed

Drum Operation Output
Enable Start

OFF Don’t care Don’t care Drum reset. Step = PRESET. OFF

ON OFF NO Drum enabled. DSC/DCC hold constant OFF

ON ON NO Drum executes. Output Coils controlled per Coil
Mask for DSC. DCC decrements to zero, and DSC
increments to next step until last step completes.

OFF

ON Don’t care YES Drum remains on last configured step.. ON

Notes:

The Reference Number assigned to the instruction box must be unique for all Drums entered
in the PLC program. Do NOT use the same Reference Number more than once for any Drum instruction

(DRUM, EDRUM, MDRMD, MDRMW, MEDRM). The number of available Drums is
dependent on the amount of T/C Memory assigned in PLC Memory Configuration.

If Drum variable DSP (Drum Step Preset) is changed by RLL instructions or HMI, the new value
 will not be retained if the original program is downloaded again to PLC.

 Related instructions: EDRUM, MDRMD, MDRMW, MEDRM

CTI 2500 Series CPU Programming Reference Manual V1.33 59

 Time/Event DRUM (EDRUM)

The EDRUM instruction operation simulates a stepper switch and can be programmed to execute 16
different “steps” that control up to 15 output coils. The EDRUM function is similar to the time-based
DRUM with additional features that allow steps to be advanced by a timer, event, or time/ event
combination. An additional input is also provided to force “step advancement” at any time.

TIME/EVT DRIVEN DRUM

 Addresses of Output Coils (Y, C, B or Blank)

C C C Y Y Y Y C C Y Y Y C Y C

1 1 1 3 3 3 4 3 4 4 4 5 1 5 0

2 2 2 7 8 9 0 2 2 8 9 0 0 4

3 4 5 6 3 2

3

 STP CNT EVT STP: Step Number (1-16)

CNT: Number of Counts/Step (0-32767)

EVT: Contact that starts Count decrement

and advances to next step when DCC=0

(X, Y, C, B)

 1 25 C22 1 0 1 1 0 0 0 1 0 0 1 1 0 0 0

 2 10 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0

 3 5 X3 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0

 4 0 Y45 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0

 5 12 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0

 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Output Coil Mask (0 = OFF / 1 = ON)

PRESET: Step where Drum starts executing (1-16)

DRUM: Drum Reference Number (see Notes)

SEC/CNT: Time interval for each Count (0-32.767 sec)

OutputStart

Jog

Enable

Drum Variables
 n = Drum Reference Number
 DSPn – Drum Step Preset (PRESET)
 DSCn – Drum Step Current (Step that is executing)
 DCCn – Drum Count Current (Counts remaining for Current Step
 DCPn.Step – Drum Count Preset (CNT) for each Step

Time Interval Calculation using Counts/Step (CNT)

Time duration of a step is determined by Counts/Step (CNT) value.

 Time Interval = SEC/CNT * CNT/STP

 where: SEC/CNT is the time base for the Drum
 CNT/STP is the time-base multiplier for the step

 Example 1: SEC/CNT is set to 100 msec (0.100 sec) and CNT/STP = 25

 Time Interval = 0.100 * 25 = 2.5 seconds

 Example 2: SEC/CNT is set to 0 and CNT/STP = 10

 When SEC/CNT = 0, time-base = 1 PLC scan-time
 Time Interval = 10 scans

60 CTI 2500 Series CPU Programming Reference Manual V1.33

Step Advancement Options

1. To program a step for Time-Based Operation Only:

 Set Counts/Step (CNT) to value > 0

 Do NOT insert a Contact in the Event (EVT) field for this step

 The Drum remains on this step until DCC decrements to zero. Then the Drum advances
to next step (see Step 2 in example).

2. To program a step for Event-Triggered Operation Only:

 Set Counts/Step (CNT) to value = 0

 Insert a Contact in the Event (EVT) field for this step

 The Drum remains on the step until the Contact specified in the EVT field turns ON. The
Drum then advances to the next step (see Step 4 in example).

3. To program a step for Timer and Event-Triggered Operation:

 Set Counts/Step (CNT) to value > 0

 Insert a Contact in the Event (EVT) field for this step

 The Drum remains on this step until DCC decrements to zero (same as time-based
operation). However, the DCC value decrements only when the Contact specified in the
EVT field is ON). The Drum advances to the next step when DCC reaches zero (see Step
1 in example).

4. To program a step for Timer or Event-Triggered Operation:

 Set Counts/Step (CNT) to value > 0

 Do NOT Insert a Contact in the Event (EVT) field for this step

 Implement logic external to the Drum so that the RLL program creates “Event-Trigger” to
turn ON the Jog Input when Drum should advance to next step.

 The Drum remains on this step until DCC decrements to zero (same as time-based
operation) or Event-Trigger activates (Jog Input transitions OFF-to-ON).

Description of Operation

1. When Enable Input is OFF, the Drum is held at PRESET Step. The Output Coils are driven to
states specified for this step. Output Coil Address = C0 represents no coil.

2. When Enable Input is ON, Drum does not advance when Start Input is OFF.

3. When Start Input turns ON, The Drum starts at PRESET Step and remains at this step until
Timer and/or Event is triggered. The Drum then advances to next step and Output Coils are
driven to states as specified in the Output Coil Mask for that step.

4. The Drum advances to the next step immediately when the Jog Input transitions OFF-to-ON
regardless of DCC value and/or Event contact programmed for that step.

5. This action continues until last configured step is completed. At that point, the Drum Output is
turned ON. The “last configured step” is defined as the highest numbered step programmed
with a non-zero CNT/STP value and/or Event-Trigger. The Output Coils are controlled by this
step and Drum Output remains ON until the Enable Input turns OFF to reset the Drum.

6. If the Start Input transitions OFF (with Enable Input ON), the Drum stays at its current step and
DCC stops decrementing and Event Contacts are ignored. This position is held until either
Start Input transitions ON or Enable Input turns OFF.

CTI 2500 Series CPU Programming Reference Manual V1.33 61

Inputs
Drum

Completed
Drum Operation Output

Enable Start Jog

OFF Don’t care Don’t care Don’t care Drum reset. Step = PRESET. OFF

ON OFF Don’t care NO Drum enabled. DSC/DCC hold constant.
EVT Contact is ignored.

OFF

ON ON OFF NO Drum executes. Output Coils controlled per
Coil Mask for DSC. Drum advances to next
step based on operation of Timer and/or
Event triggers until last step completes.

OFF

ON ON OFF-to-ON NO Drum advances to next step. OFF

ON Don’t care Don’t care YES Drum remains on last configured step.. ON

Note:

The Reference Number assigned to the instruction box must be unique for all Drums entered in
the PLC program. Do NOT use the same Reference Number more than once for any Drum instruction

(DRUM, EDRUM, MDRMD, MDRMW, MEDRM). The number of available Drums is
dependent on the amount of T/C Memory assigned in PLC Memory Configuration.

If Drum variable DSP (Drum Step Preset) is changed by RLL instructions or HMI, the new value
 will not be retained if the original program is downloaded again to PLC.

Related instructions: DRUM, MDRMD, MDRMW, MEDRM

62 CTI 2500 Series CPU Programming Reference Manual V1.33

 Maskable Event Drum with Discrete Outputs (MDRMD)

The MDRMD instruction operation simulates a stepper switch and can be programmed to execute 16
different “steps” that control up to 15 output coils. Its operation is very similar to the EDRUM. However,
the MDRMD instruction has an additional feature that allows a Configurable Control Mask to be specified
that determines the Output Coils that are actually set for each step.

MDRMD

 Addresses of Output Coils (Y, C, B or Blank)

C C C Y Y Y Y C C Y Y Y C Y Y

1 1 1 3 3 3 4 3 4 4 4 5 1 5 5

2 2 2 7 8 9 0 2 2 8 9 0 0 4 5

3 4 5 6 3 2

3

 STP CNT EVT STP: Step Number (1-16)

CNT: Number of Counts/Step (0-32767)

EVT: Contact that starts Count decrement

and advances to next step when DCC=0

(X, Y, C, B)

 1 25 C22 1 0 1 1 0 0 0 1 0 0 1 1 0 0 0

 2 10 1 0 0 0 1 1 1 0 0 0 0 1 1 0 1

 3 5 X3 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0

 4 0 Y45 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1

 5 12 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0

 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fixed Output Coil Mask (0 = OFF / 1 = ON)

PRESET: Step where Drum starts executing (1-16)
OutputStart

Jog

Enable

DRUM: Drum Reference Number (see Notes)

SEC/CNT: Time interval for each Count (0-32.767 sec)

MASK: Configurable Control Mask Address (V)

Drum Variables
 n = Drum Reference Number
 DSPn – Drum Step Preset (PRESET)
 DSCn – Drum Step Current (Step that is executing)
 DCCn – Drum Current Count (Counts remaining for Current Step)
 DCPn.Step – Drum Count Preset (CNT) for each Step

Time Interval Calculation using Counts/Step (CNT)

Time duration of a step is determined by Counts/Step (CNT) value.

 Time Interval = SEC/CNT * CNT/STP

 where: SEC/CNT is the time base for the Drum
 CNT/STP is the time-base multiplier for the step

 Example 1: SEC/CNT is set to 100 msec (0.100 sec) and CNT/STP = 25

 Time Interval = 0.100 * 25 = 2.5 seconds

 Example 2: SEC/CNT is set to 0 and CNT/STP = 10

 When SEC/CNT = 0, time-base = 1 PLC scan-time
 Time Interval = 10 scans

CTI 2500 Series CPU Programming Reference Manual V1.33 63

Step Advancement Options

1. To program a step for Time-Based Operation Only:

 Set Counts/Step (CNT) to value > 0

 Do NOT insert a Contact in the Event (EVT) field for this step

 The Drum remains on this step until DCC decrements to zero. Then the Drum advances
to next step (see Step 2 in example).

2. To program a step for Event-Triggered Operation Only:

 Set Counts/Step (CNT) to value = 0

 Insert a Contact in the Event (EVT) field for this step

 The Drum remains on the step until the Contact specified in the EVT field turns ON. The
Drum then advances to the next step (see Step 4 in example).

3. To program a step for Timer and Event-Triggered Operation:

 Set Counts/Step (CNT) to value > 0

 Insert a Contact in the Event (EVT) field for this step

 The Drum remains on this step until DCC decrements to zero (same as time-based
operation). However, the DCC value decrements only when the Contact specified in the
EVT field is ON). The Drum advances to the next step when DCC reaches zero (see Step
1 in example).

4. To program a step for Timer or Event-Triggered Operation:

 Set Counts/Step (CNT) to value > 0

 Do NOT Insert a Contact in the Event (EVT) field for this step

 Implement logic external to the Drum so that the RLL program creates “Event-Trigger” to
turn ON the Jog Input when Drum should advance to next step.

 The Drum remains on this step until DCC decrements to zero (same as time-based
operation) or Event-Trigger activates (Jog Input transitions OFF-to-ON).

64 CTI 2500 Series CPU Programming Reference Manual V1.33

Configurable Control Mask

The Configurable Control Mask is the extra feature added to the MDRMD instruction that adds
flexibility to the control of the Output Coils. This mask allows a run-time selection of the Output Coils
that are to be controlled by each Drum step. When a bit in the Configurable Control Mask is ON (set
to 1), the Fixed Output Mask controls the corresponding Output Coil. When the bit in the configurable
mask is OFF, the corresponding Output Coil is unchanged.

The Configurable Control Mask is determined by the bit pattern in the memory table specified in the
MASK field. The mask occupies 16 consecutive V-Memory words starting with the address specified
in the MASK field. The first word corresponds to Step 1, the second to Step 2, etc. One bit within
each word corresponds to an Output Coil as shown below:

Configurable Control Mask

Bit Position

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Output Coil

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 Not Used

Example Memory Table for Configurable Control Mask:

MASK Address: V500

Address Value Description

V500 1AE7H Output Coils 3, 4, 6, 8, 9, 10, 13, 14, 15 controlled by Step 1

V501 00FFH Output Coils 8, 9, 10, 11, 12, 13, 14, 15 controlled by Step 2

V502 7FF0H Output Coils 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 controlled by Step 3

… … …

V515 3F78H Output Coils 2, 3, 4, 5, 6, 7, 9, 10, 11, 12 controlled by Step 16

NOTE: Setting Control Mask Word to 7FFFH (32767) controls all 15 Output Coils

Description of Operation

1. When Enable Input is OFF, the Drum is held at PRESET Step. The Output Coils are driven to
states specified for this step by Fixed Output Coil Mask and Configurable Control Mask. An
Output Coil Address = C0 represents no coil.

2. When Enable Input is ON, the Drum does not advance when Start Input is OFF.

3. When Start Input turns ON, The Drum starts at PRESET step and remains at this step until
Timer and/or Event is triggered. The Drum then advances to next step and Output Coils are
driven to states as specified in the Output Coil Mask and Configurable Control Mask for that
step.

4. The Drum advances to the next step immediately when the Jog Input transitions OFF-to-ON
regardless of DCC value and/or Event contact programmed for that step.

CTI 2500 Series CPU Programming Reference Manual V1.33 65

5. This action continues until last configured step is completed. At that point, the Drum Output is

turned ON. The “last configured step” is defined as the highest numbered step programmed
with a non-zero CNT/STP value and/or Event-Trigger. The Output Coils are controlled by this
step and Drum Output remains ON until the Enable Input turns OFF to reset the Drum.

6. If the Start Input transitions OFF (with Enable Input ON), the Drum stays at its current step and
DCC stops decrementing and Event Contacts are ignored. This position is held until either Start
Input transitions ON or Enable Input turns OFF.

Inputs
Drum

Completed
Drum Operation Output

Enable Start Jog

OFF Don’t care Don’t care Don’t care Drum reset. Step = PRESET. OFF

ON OFF Don’t care NO Drum enabled. DSC/DCC hold constant.
EVT Contact is ignored.

OFF

ON ON OFF NO Drum executes. Output Coils controlled per
Output Coil Mask and Control Mask for
DSC. Drum advances to next step based
on operation of Timer and/or Event triggers
until last step completes.

OFF

ON ON OFF-to-ON NO Drum advances to next step. OFF

ON Don’t care Don’t care YES Drum remains on last configured step. ON

Note:

The Reference Number assigned to the instruction box must be unique for all Drums entered
in the PLC program. Do NOT use the same Reference Number more than once for any Drum instruction

(DRUM, EDRUM, MDRMD, MDRMW, MEDRM). The number of available Drums is dependent on the
amount of T/C Memory assigned in PLC Memory Configuration.

If Drum variable DSP (Drum Step Preset) is changed by RLL instructions or HMI, the new value will not
be retained if the original program is downloaded again to PLC.

 Related instructions: DRUM, EDRUM, MDRMW, MEDRM

66 CTI 2500 Series CPU Programming Reference Manual V1.33

 Maskable Event Drum with Word Output (MDRMW)

The MDRMW instruction operation simulates a stepper switch is very similar to the MDRMD. However,
the MDRMW instruction output data is written to an internal memory location instead of pre-defined
Output Coils.

MDRMW

Output Word Bit Number

2 3 4 5 5 7 8 9 10 11 12 13 14 15 16

 STP CNT EVT STP: Step Number (1-16)

CNT: Number of Counts/Step (0-32767)

EVT: Contact that starts Count decrement

and advances to next step when DCC=0

(X, Y, C, B)

 1 25 C22 1 0 1 1 0 0 0 1 0 0 1 1 0 0 0

 2 10 1 0 0 0 1 1 1 0 0 0 0 1 1 0 1

 3 5 X3 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0

 4 0 Y45 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1

 5 12 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0

 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 Fixed Output Mask (0 = OFF / 1 = ON)

Output

Start

Jog

Enable

PRESET: Step where Drum starts executing (1-16)

DRUM: Drum Reference Number (see Notes)

SEC/CNT: Time interval for each Count (0-32.767 sec)
OUTPUT: Word Location where Drum writes Output (V, WY)

MASK: Configurable Control Mask Address (V)

Drum Variables
 n = Drum Reference Number
 DSPn – Drum Step Preset (PRESET)
 DSCn – Drum Step Current (Step that is executing)
 DCCn – Drum Current Count (Counts remaining for Current Step)
 DCPn.Step – Drum Count Preset (CNT) for each Step

Time Interval Calculation using Counts/Step (CNT)

Time duration of a step is determined by Counts/Step (CNT) value.

 Time Interval = SEC/CNT * CNT/STP

 where: SEC/CNT is the time base for the Drum
 CNT/STP is the time-base multiplier for the step

 Example 1: SEC/CNT is set to 100 msec (0.100 sec) and CNT/STP = 25

 Time Interval = 0.100 * 25 = 2.5 seconds

 Example 2: SEC/CNT is set to 0 and CNT/STP = 10

 When SEC/CNT = 0, time-base = 1 PLC scan-time
 Time Interval = 10 scans

CTI 2500 Series CPU Programming Reference Manual V1.33 67

Step Advancement Options

1. To program a step for Time-Based Operation Only:

 Set Counts/Step (CNT) to value > 0

 Do NOT insert a Contact in the Event (EVT) field for this step

 The Drum remains on this step until DCC decrements to zero. Then the Drum advances
to next step (see Step 2 in example).

2. To program a step for Event-Triggered Operation Only:

 Set Counts/Step (CNT) to value = 0

 Insert a Contact in the Event (EVT) field for this step

 The Drum remains on the step until the Contact specified in the EVT field turns ON. The
Drum then advances to the next step (see Step 4 in example).

3. To program a step for Timer and Event-Triggered Operation:

 Set Counts/Step (CNT) to value > 0

 Insert a Contact in the Event (EVT) field for this step

 The Drum remains on this step until DCC decrements to zero (same as time-based
operation). However, the DCC value decrements only when the Contact specified in the
EVT field is ON). The Drum advances to the next step when DCC reaches zero (see Step
1 in example).

4. To program a step for Timer or Event-Triggered Operation:

 Set Counts/Step (CNT) to value > 0

 Do NOT Insert a Contact in the Event (EVT) field for this step

 Implement logic external to the Drum so that the RLL program creates “Event-Trigger” to
turn ON the Jog Input when Drum should advance to next step.

 The Drum remains on this step until DCC decrements to zero (same as time-based
operation) or Event-Trigger activates (Jog Input transitions OFF-to-ON).

68 CTI 2500 Series CPU Programming Reference Manual V1.33

Configurable Control Mask

The Configurable Control Mask is the extra feature added to the MDRMW instruction that adds
flexibility to the control of the value written to the OUTPUT Word Address. This mask allows a run-
time selection of the individual bits in the Output Word that are to be controlled by each Drum step.
When a bit in the Configurable Control Mask is ON (set to 1), the Fixed Output Mask controls the
corresponding bit. When the bit in the configurable mask is OFF, the corresponding bit is unchanged.

The Configurable Control Mask is determined by the bit pattern in the memory table specified in the
MASK field. The mask occupies 16 consecutive V-Memory words starting with the address specified
in the MASK field. The first word corresponds to Step 1, the second to Step 2, etc. One bit within
each word corresponds to a bit in the OUTPUT Word Address as shown below:

Example Memory Table for Configurable Control Mask:

MASK Address: V500

OUTPUT Word: V100

Address Value Description

V500 1AE7H V100 Bits 4, 5, 7, 9, 10, 11, 14, 15, 16 controlled by Step 1

V501 00FFH V100 Bits 9, 10, 11, 12, 13, 14, 15, 16 controlled by Step 2

V502 7FF0H V100 Bits 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 controlled by Step 3

… … …

V515 3F78H V100 Bits 2, 3, 4, 5, 6, 7, 9, 10, 11, 12 controlled by Step 16

NOTE: Setting Control Mask Word to 7FFFH (32767) controls all bits (Bit 2-16)

Description of Operation

1. When Enable Input is OFF, the Drum is held at PRESET Step. The OUTPUT Word is set to the
value specified for this step by Fixed Output Mask and Configurable Control Mask.

2. When Enable Input is ON, the Drum is enabled but does not advance when Start Input is OFF.

3. When Start Input turns ON, The Drum starts at PRESET Step and remains at this step until
Timer and/or Event is triggered. Drum then advances to next step and OUTPUT Word is set to
the value as specified in the Fixed Output Mask and Configurable Control Mask for that step.

4. The Drum advances to the next step immediately when the Jog Input transitions OFF-to-ON
regardless of DCC value and/or Event contact programmed for that step.

CTI 2500 Series CPU Programming Reference Manual V1.33 69

5. This action continues until last configured step is completed. At that point, the Drum Output is

turned ON. The “last configured step” is defined as the highest numbered step programmed
with a non-zero CNT/STP value and/or Event-Trigger. The value in the OUTPUT Word is
controlled by this step and Drum Output remains ON until the Enable Input turns OFF to reset
the Drum.

6. If the Start Input transitions OFF (with Enable Input ON), the Drum stays at its current step and
DCC stops decrementing and Event Contacts are ignored This position is held until either Start
Input transitions ON or Enable Input turns OFF.

Inputs
Drum

Completed
Drum Operation Output

Enable Start Jog

OFF Don’t care Don’t care Don’t care Drum reset. Step = PRESET. OFF

ON OFF Don’t care NO Drum enabled. DSC/DCC hold constant.
EVT Contact is ignored.

OFF

ON ON OFF NO Drum executes. Output Word is controlled
per Fixed Output Mask and Control Mask
for DSC. Drum advances to next step
based on operation of Timer and/or Event
triggers until last step completes.

OFF

ON ON OFF-to-ON NO Drum advances to next step. OFF

ON Don’t care Don’t care YES Drum remains on last configured step.. ON

Notes:

The Reference Number assigned to the instruction box must be unique for all Drums entered
in the PLC program. Do NOT use the same Reference Number more than once for any Drum instruction

(DRUM, EDRUM, MDRMD, MDRMW, MEDRM). The number of available Drums is
dependent on the amount of T/C Memory assigned in PLC Memory Configuration.

If Drum variable DSP (Drum Step Preset) is changed by RLL instructions or HMI, the new value
 will not be retained if the original program is downloaded again to PLC.

Related instructions: DRUM, EDRUM, MDRMD, MEDRM

70 CTI 2500 Series CPU Programming Reference Manual V1.33

When using Word addresses
(i.e., V-memory) for bit flags
in COIL, MASK, EVENT, and
USE STEP parameters, the
address MUST be entered in
Word.Bit format (i.e., V35.1
or K55.9).

See Configuration Notes for
more details.

Start

Jog

Enable

Output
PRESET: Step where Drum starts executing (1-128)

DRUM: Drum Reference Number (see Notes)

SEC/CNT: Time interval for each Count (0-32.767 sec)

MASK: Start address for COIL mask array (C, V, K)
Number of consecutive addresses used
is determined by COIL COUNT parameter

COIL: Starting COIL address (Y, C, V, WY)
Number of consecutive addresses used
is determined by COIL COUNT parameter

EVENT: Start address for EVENT array (Y, C, V, WX/WY)
Number of consecutive addresses used
is determined by STEPS parameter

COUNT: Start address for COUNT value array (V, K)

Number of consecutive addresses used

is determined by STEPS parameter

USE STEP: Start address for USE STEP mask array (K, V, C)

Number of consecutive addresses used

is determined by STEPS parameter

COIL COUNT: Number of Output COILS (16-128)

Must be entered as a multiple of 16

CUR STEP: Current Step

CUR COUNT: Current Count
Displayed when Ladder

Status is enabled

STEPS: Number of STEPS (16-128)

Must be entered as a multiple of 16

 MEGAEDRUM

 Mega Event DRUM (MEDRM)

The MEDRM instruction is a “super-sized” version of the EDRUM that provides a much simpler means of
logic programming when the application requires the control of more than 16 execution states (or “steps”)
and/or more than 15 output coils. The MEDRM may be programmed to execute up to 128 different steps
and control up to 128 output coils.

Additionally, the MEDRM instruction includes control masks that allow the PLC program to set and/or
change the STEPS, EVENTS, and COILS controlled by the Drum.

Note:

This instruction is available only when using 2500 Series CPU firmware V6.18 or later
and 505 WorkShop V4.60 or later as PLC programming software.

Drum Variables

 n = Drum Reference Number
 DSPn – Drum Step Preset (PRESET)
 DSCn – Drum Step Current (Step that is executing)
 DCCn – Drum Current Count (Counts remaining for Current Step)
 DCP – Represented by addresses used for COUNT parameter

CTI 2500 Series CPU Programming Reference Manual V1.33 71

Configuration Notes for MEGAEDRUM:

1. Drum Number (DRM), PRESET, and SEC/CNT is entered exactly as done for EDRUM.

Note:

The COIL, MASK, EVENT, and USE STEP parameters utilize a memory array of BITS for their operation
(as detailed below). Therefore, the address assigned to each of these fields during configuration of the

MEDRM must specify a BIT address.

You may always use a Bit memory type (i.e. C-memory) for these parameters. However,
some fields (such as MASK) can be quite large and better utilize available memory when

stored in configurable word memory (i.e. V or K-memory). This is accomplished by assigning
the Start Address for these parameters in WORD.BIT format as shown below:

 V1501.1 Start Address for bit memory array is Word V1501 / Bit 1
 K500.1 Start Address for bit memory array is Word K500 / Bit 1

Any available bit number (1-16) within the word may be used for Start Address. However,
the use of any bit other than Bit 1will result in the bit array “wrapping” into the following word
since all parameter fields require the length of the bit arrays to be a multiple of 16. In order

to aid in data entry and debug process, we recommend that each address entered in
WORD.BIT format start at “Bit 1”.

2. COIL parameter designates addresses to be used for Output Coils. The address entered here
represents the start address for memory array. The total number of required consecutive (bit)
addresses is specified by the COIL COUNT parameter.

 The valid memory types are C, Y, V, and WY. If Bit address (C, Y) is used, the number of bits
equals COIL COUNT. If Word.Bit address (V, WY) is entered, the required number of words
equals COIL COUNT / 16.

3. MASK parameter specifies the ON/OFF states that are written to the Output Coils for each step
as the Drum executes. In the EDRUM, these states are hard-coded into the instruction box for
each step as it is inserted into the RLL program. In the MEDRM, these values are held in a
memory array starting with the address entered in the MASK parameter field. The total number of
required consecutive (bit) addresses is determined by COIL COUNT and number of STEPS.

 The valid memory types are C, V, K. If Bit address (C) is used, the number of bits equals COIL
COUNT * STEPS. If WORD.BIT Address is entered, the total number of words equals (COIL
COUNT * STEPS) / 16.

4. EVENT parameter designates the conditions used to “hold” the Drum at a particular step and stop
the Drum Count (DCC) from decrementing as long as the bit is FALSE. In the EDRUM, the EVT
states are hard-coded into the instruction box for each step as it is inserted into the RLL program.
In the MEDRM, these values are held in a memory array starting with the address entered in the
EVENT parameter field. The total number of required consecutive (bit) addresses is determined
by the value entered for the STEPS parameter.

 The valid memory types are X/Y, C, V, WX/WY. If Bit address (X/Y, C) is used, the number of bits
equals STEPS value. If WORD.BIT address (V, WX/WY) is entered, the required number of words
equals STEPS / 16.

72 CTI 2500 Series CPU Programming Reference Manual V1.33

5. COUNT specifies the length of time the Drum remains on each particular step (as long as the

EVENT condition is TRUE). The actual time interval is determined by the number of COUNTS
and the SEC/CNT value (see description on next page). In the EDRUM, the CNT values are hard-
coded into the instruction box for each step as it is inserted into the RLL program. In the MEDRM,
these values are held in a memory array starting with the address entered in the COUNT field.

The COUNT parameter must be entered as a Word address (V, K). The total number of required
consecutive words is determined by the number of STEPS.

6. USE STEP parameter designates ON/OFF states that indicate whether the corresponding step is
executed (ON) or skipped (OFF) by the Drum. In the EDRUM, a step can be skipped by setting
CNT= 0 and leaving the EVT condition blank for a particular step while entering the instruction
box. In the MEDRM, the execution of each step is dependent on the corresponding bit in the USE
STEP memory array being set ON. The total number of required consecutive (bit) addresses is
determined by the STEPS parameter.

The valid memory types are C, K, and V. If Bit address (C) is used, the number of bits equals
STEPS value. If WORD.BIT address (K, V) is entered, the required number of words equals
STEPS/16.

7. STEPS specify the number of output states programmed for the Drum. This value must be a
constant in the range of 16-128, and an even multiple of 16 (i.e, 16, 32, 48, etc).

8. COIL COUNT specifies the number of Output Coils controlled by the Drum. This value must be a
constant in the range of 16-128, and an even multiple of 16 (i.e, 16, 32, 48, etc).

Time Interval Calculation using Counts/Step (CNT)

Time duration of a step is determined by Counts/Step (CNT) value.

 Time Interval = SEC/CNT * CNT/STP

 where: SEC/CNT is the time base for the Drum
 CNT/STP is the time-base multiplier for the step

 Example 1: SEC/CNT is set to 100 msec (0.100 sec) and CNT/STP = 25

 Time Interval = 0.100 * 25 = 2.5 seconds

 Example 2: SEC/CNT is set to 0 and CNT/STP = 10

 When SEC/CNT = 0, time-base = 1 PLC scan-time
 Time Interval = 10 scans

CTI 2500 Series CPU Programming Reference Manual V1.33 73

Step Advancement Options

1. To program a step for Time-Based Operation Only:

 Set word in COUNT memory array for the corresponding step to value > 0

 Set the bit in the EVENT memory array for the corresponding step to ON (TRUE)

 The Drum remains on this step until DCC decrements to zero. Then the Drum advances
to next step.

2. To program a step for Event-Triggered Operation Only:

 Set word in COUNT memory array for the corresponding step to 0

 The Drum remains on the step until the bit in the EVENT memory array corresponding to
the current step turns ON (via PLC logic or HMI interface). The Drum then advances to
the next step.

3. To program a step for Timer and Event-Triggered Operation:

 Set word in COUNT memory array for the corresponding step to value > 0

 When the Drum reaches this step, the Drum timer advances only when the bit in the
EVENT memory array corresponding to the current step turns ON (via PLC logic or HMI
interface).

 The Drum remains on this step until DCC decrements to zero (same as time-based
operation). The Drum then advances to the next step.

4. To program a step for Timer or Event-Triggered Operation:

 Set word in COUNT memory array for the corresponding step to value > 0

 Set bit in the EVENT memory array for the corresponding step to OFF (FALSE)

 Implement logic external to the Drum so that the RLL program creates “Event-Trigger” to
turn ON the Jog Input when Drum should advance to next step.

 The Drum remains on this step until DCC decrements to zero (same as time-based
operation) or Event-Trigger activates (Jog Input transitions OFF-to-ON).

5. To Skip a programmed step:

 Set bit in the USE STEP memory array for the corresponding step to OFF (FALSE)

74 CTI 2500 Series CPU Programming Reference Manual V1.33

DRM: Drum number. Must be unique across all Drum instructions in the PLC program.

PRESET: Step number where Drum execution begins (when Enable Input goes OFF-to-ON).

SEC/CNT: Time base (in seconds) used for each COUNT. Step time period = SEC/CNT * COUNT.

COIL: Drum Output addresses. In this example, 32 coils (from COIL COUNT) are assigned Y65-Y96.

MASK: Series of bits that holds Output Coil states for each step. Length depends on the number of STEPS
and COIL COUNT used. The address is the starting bit position for MASK data.

For this example, the Output Coil Mask for each step occupies 32 bits. Total length of MASK data =
32 coils * 32 steps = 1024 bits. Here, the MASK address is assigned as V1401.1 (bit 1 of V1401) so
that the MASK data is stored in a 64-word table (V1401-V1464) where V1401-V1402 = Step 1
mask, V1403-V1404 = Step 2 mask, … , V1463-V1464 = Step 32 mask.

The Output Coil Mask is written to the Drum Output Coils for Step 1 as shown below:

EVENT: Conditions for Drum advancement. One bit is assigned for each step. Drum timer runs (COUNT
decrements) when the corresponding bit is ON. If COUNT=0, the Drum advances to the next Step
when bit is ON. Total bits used depends on number of STEPS entered. For any step where EVENT
condition is unused, the corresponding bit should be set ON to allow Drum to operate properly. For
this case, bits C3001-C3032 are used for EVENTS where C3001 = Step 1 event, C3002 = Step 2
event, … , C3032 = Step 32 event.

COUNT: Table that hold time-base (SEC/CNT) increments for each step. The step COUNT specifies the time
 period that the Drum timer runs before advancing to the next step. COUNT value for each step
must be an integer in the range of 0-32767. Length of this table depends on the number of STEPS
(32) used. In this example, the COUNT values are stored in V1501-V1532 where V1501 = Step 1,
V1502 = Step 2, … , V1532 = Step 32.

USE STEP: Bit mask that determines if the corresponding step is executed. One bit is assigned for each step. If
the bit is ON, the step is executed. If the bit is OFF, the step is skipped. Total bits used depends on
the number of STEPS entered. In this example, USE STEP bits are assigned to C3101-C3132
where C3101 = Step 1, C3102 = Step 2, … , C3232 = Step 32.

STEPS: Number of steps (or output states). Value entered must be a constant between 16-128 and a
multiple of 16 (i.e, 16, 32, 48, … , 128).

COIL COUNT: Number of output coils controlled by the Drum. Value entered must be a constant between 16-128
and a multiple of 16 (i.e, 16, 32, 48, … , 128).

Y

73

Y

74

Y

75

Y

76

Y

77

Y

78

Y

79

Y

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Y

65

Y

66

Y

67

Y

68

Y

69

Y

70

Y

71

Y

72

1 0 1 1 1 0 1 1 0011 0 0 0 1

1 0 1 1 1 0 1 1 0011 0 0 0 1

0 0 0 0 1 0 0 0 1101 1 1 1 0

V1401

V1402

Y

89

Y

90

Y

91

Y

92

Y

93

Y

94

Y

95

Y

96

Y

81

Y

82

Y

83

Y

84

Y

85

Y

86

Y

87

Y

88

0 0 0 0 1 0 0 0 1101 1 1 1 0

NOTE: Word values are written into bits starting with MSB.

PRESET: 1

DRM: 14

SEC/CNT: .050

MASK: V1401.1

COIL: Y65

EVENT: C3001

COUNT: V1501

USE STEP: C3101

COIL COUNT: 32

STEPS: 32

 MEGAEDRUM
CONFIGURATION EXAMPLE 1:

CTI 2500 Series CPU Programming Reference Manual V1.33 75

DRM: Drum number. Must be unique across all Drum instructions in the PLC program.

PRESET: Step number where Drum execution begins (when Enable Input goes OFF-to-ON).

SEC/CNT: Time base (in seconds) used for each COUNT. Step time period = SEC/CNT * COUNT.

COIL: Drum Output address. In this example, WY41 (bits 1-16) are controlled as Drum executes.
WY word address is very useful for Output Coil states written to Profibus slave device.

MASK: Series of bits that holds Output Coil states for each step. Length depends on the number of STEPS
and COIL COUNT used. The address is the starting bit position for MASK data.

For this example, the Output Coil Mask for each step occupies 16 bits. Total length of MASK data =
16 coils * 32 steps = 512 bits. Here, the MASK address is assigned as V800.1 (bit 1 of V800) so
the MASK data is stored in a 32-word table (V800-V831) where V800 = Step 1 mask,
V801 = Step 2 mask, … , V831 = Step 32 mask.

As the Drum advances thru each step, the corresponding Output Coil Mask data is written to the
Drum Output address (as specified by the COIL parameter address).

EVENT: Conditions for Drum advancement. One bit is assigned for each step. Drum timer runs (COUNT
decrements) when the corresponding bit is ON. Total bits used equals number of STEPS. In this
example, EVENT address = V840.1 so V840-V841 hold EVENT conditions for steps 1-32 where
V840.1 (bit 1) = Step 1, V840.2 = Step 2, … , V841.1 = Step 17, … , V841.16 = Step 32 event.

COUNT: Table that hold time-base (SEC/CNT) increments for each step. Length of this table depends on the
number of STEPS (32) used. In this example, the COUNT values are stored in V850-V881 where
V850 = Step 1, V852 = Step 2, … , V881 = Step 32.

USE STEP: Bit mask that determines if the corresponding step is executed. One bit is assigned for each step. If
the bit is ON, the step is executed. If the bit is OFF, the step is skipped. Total bits used equals the
number of STEPS. In this example, USE STEP bits are assigned to V890-V891where
V890.1 (bit 1) = Step 1, V890.2 = Step 2, … , V891.1 = Step 17, … , V891.16 = Step 32.

STEPS: Number of steps (or output states). Value entered must be a constant between 16-128 and a
multiple of 16 (i.e, 16, 32, 48, … , 128).

COIL COUNT: Number of output coils controlled by the Drum. Value entered must be a constant between 16-128
and a multiple of 16 (i.e, 16, 32, 48, … , 128).

PRESET: 1

DRM: 18

SEC/CNT: .100

MASK: V800.1

COIL: WY41.1

EVENT: V840.1

COUNT: V850

USE STEP: V890.1

COIL COUNT: 16

STEPS: 32

 MEGAEDRUM
CONFIGURATION EXAMPLE 2:

1 2 3 4 5 6 7 8 9 10 1112131415 16

1 0 1 1 1 0 1 0 0101 0 0 1 0

0 0 0 1 1 1 0 1 0111 1 0 0 0

V800

V801

0 1 0 0 0 1 0 1 1010 1 1 0 1

0 0 1 1 0 0 1 1 1110 0 1 0 0

0 1 1 1 0 1 1 0 0100 1 0 0 1

0 1 1 1 0 0 1 1 0110 0 0 0 1

.

.

.

V802

V829

V830

V831

Step 1
Step 2

Step 3

Step 32
Step 31

Step 30

Note: WY41 value shows

Coil Outputs for Step 1

1 2 3 4 5 6 7 8 9 10 1112131415 16

1 0 1 1 1 0 1 0 0101 0 0 1 0WY41

76 CTI 2500 Series CPU Programming Reference Manual V1.33

Description of Operation

1. When Enable Input is OFF, the Drum is held at PRESET Step. The Output Coil (COIL) addresses
are driven to states specified for this step in the Coil Mask Array (MASK)..

2. When Enable Input is ON, the Drum is enabled but does not advance when the Start Input is
OFF.

3. When Start Input turns ON, The Drum starts at PRESET Step and remains at this step until
corresponding Event contact (EVENT) turns ON and COUNT value decrements to 0. The Drum
then advances to next step and Output Coils are driven to states as specified in the Coil Mask
Array (COIL) for that step.

4. The Drum advances to the next step immediately when the Jog Input transitions OFF-to-ON
regardless of COUNT value and/or state of the Event contact used for that step.

5. This action continues until last step is completed. At that point, the Drum Output is turned ON. If
the last step is bypassed due to the USE STEP contact turned OFF, the Drum Output turns ON
when the last executed step is completed. The Output Coils are controlled by the states set for
this step in the Coil Mask Array and Drum Output remains ON until the Enable Input turns OFF to
reset the Drum.

6. If the Start Input transitions OFF (with Enable Input ON), the Drum stays at its current step and
DCC stops decrementing and Event contact is ignored This position is held until either Start Input
transitions ON or Enable Input turns OFF.

Inputs
Drum

Completed
Drum Operation Output

Enable Start Jog

OFF Don’t care Don’t care Don’t care Drum reset. Step = PRESET. OFF

ON OFF Don’t care NO Drum enabled. DSC/DCC hold constant.
EVENT contact is ignored.

OFF

ON ON OFF NO Drum advances to next step based on
operation of Timer and/or Event triggers
until last step completes.

If USE STEP contact is OFF:
 Drum advances to next step
ELSE:
 Output Coils controlled per COIL Mask
 for current step

OFF

ON ON OFF-to-ON NO Drum advances to next step. OFF

ON Don’t care Don’t care YES Drum remains on last configured step. ON

Note:

The Reference Number assigned to the instruction box must be unique for all Drums entered
in the PLC program. Do NOT use the same Reference Number more than once for any Drum instruction

(DRUM, EDRUM, MDRMD, MDRMW, MEDRM). The number of available Drums is dependent on the
amount of T/C Memory assigned in PLC Memory Configuration.

If Drum variable DSP (Drum Step Preset) is changed by RLL instructions or HMI, the new value will not
be retained if the original program is downloaded again to PLC.

CTI 2500 Series CPU Programming Reference Manual V1.33 77

 Related instructions: DRUM, EDRUM, MDRMD, MDRMW

78 CTI 2500 Series CPU Programming Reference Manual V1.33

3.6 Relational / Comparison Operations

These instructions perform mathematical comparison of two values.

 Compare (CMP)

The CMP instruction compares two signed integer values and indicates results for Less Than (<), Greater
Than (>), and Equal To (=) conditions.

COMPARE

 A < = > B

REF# Instruction Reference Number

(0-32767) - see Notes

OutputInput

A: Memory Address A

B: Memory Address B or Constant

LT: Bit turned ON when A < B

GT: Bit turned ON when A > B

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

Any Coil Address:

Y, C, B, or blank

REF#

Description of Operation

The BITC instruction executes each scan the Input is ON.

 Contents of (B) can specify a Word Address or signed integer constant.

 The values in Memory Address (A) and (B) are evaluated as 16-bit signed integers.
Range: -32768 thru +32767

 The Coil Address in the GT and/or LT fields can be left blank if no indication of these results are
desired.

Input Function LT GT Output

OFF CMP instruction does not execute OFF OFF OFF

ON

CMP instruction executes as follows:

 IF (A < B)
 IF (A > B)
 IF (A = B)

ON
OFF
OFF

OFF
ON
OFF

OFF
OFF
ON

Note:
The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for

documentation purposes. The number entered can be repeated as needed.

The CMP instruction Output creates power flow based only on the Equality test. Additional logic is
required for power flow logic based on ‘GT’ and ‘LT’ conditions.

 Related instructions: EQU, GEQ, GTR, LEQ, LESS, NEQ

CTI 2500 Series CPU Programming Reference Manual V1.33 79

 Equal (EQU)

The EQU instruction compares two values (integers, unsigned integer, or floating point numbers) and
energizes the Output if the first is equal (=) to the second.

Note:

This instruction is enhanced in 2500 Series CPU to support the use of the floating point number (FLOAT)
data type. The use of this feature is detailed in GREEN text in this section.

You must have 2500 Series CPU firmware V6.18 (or later) and
505 WorkShop V4.60 (or later) as PLC programming software to use this feature.

A = B

TYPE: INT - Signed Integer

UINT - Unsigned Integer

FLOAT - 32-bit Real Number

OutputInput

A: Memory Address A

B: Memory Address B

or Constant

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

TYPE

Description of Operation

The EQU instruction executes each scan the Input is ON.

 The values in Memory Address (A) and (B) are evaluated based on the data type entered in the
‘TYPE’ field in the upper right corner in the instruction box as shown below:

 TYPE Value

 INT 16-bit signed integers
 UINT 16-bit unsigned integers
 FLOAT 32-bit IEEE floating point value (see Note above)

 FLOAT parameters are supported only when ‘FLOAT’ data type is entered.

 Contents of parameter (B) can specify a Word Address or constant (Integer or FLOAT).

 FLOAT values are designated by using a Real Memory Address (i.e, V23.) that occupies
two consecutive PLC words in WX/WY, V, or K memory types.

 When ‘FLOAT’ data type is entered, it is still possible to designate integer values for
Memory Address parameters (A) and/or (B). Those values are converted to equivalent
floating point values before the comparison is executed.

80 CTI 2500 Series CPU Programming Reference Manual V1.33

Input Function Output

OFF EQU instruction does not execute OFF

ON

EQU instruction executes as follows:

 IF (A <> B)

 IF (A = B)

OFF

ON

 Related instructions: CMP, GEQ, GTR, LEQ, LESS, NEQ

CTI 2500 Series CPU Programming Reference Manual V1.33 81

 Greater or Equal (GEQ)

The GEQ instruction compares two values (signed integers, unsigned integers, or floating point numbers)
and energizes the Output if the first is greater or equal (>=) to the second.

Note:

This instruction is enhanced in 2500 Series CPU to support the use of the floating point number (FLOAT)
data type. The use of this feature is detailed in GREEN text in this section.

You must have 2500 Series CPU firmware V6.18 (or later) and
505 WorkShop V4.60 (or later) as PLC programming software to use this feature

A >= B

TYPE: INT - Signed Integer

UINT - Unsigned Integer

FLOAT - 32-bit Real Number

OutputInput

A: Memory Address A

B: Memory Address B

or Constant

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

TYPE

Description of Operation

The GEQ instruction executes each scan the Input is ON.

 The values in Memory Address (A) and (B) are evaluated based on the data type entered in the
‘TYPE’ field in the upper right corner in the instruction box as shown below:

 TYPE Value

 INT 16-bit signed integers
 UINT 16-bit unsigned integers
 FLOAT 32-bit IEEE floating point value (see Note above)

 FLOAT parameters are supported only when ‘FLOAT’ data type is entered.

 Contents of parameter (B) can specify a Word Address or constant (Integer or FLOAT).

 FLOAT values are designated by using a Real Memory Address (i.e, V23.) that occupies
two consecutive PLC words in WX/WY, V, or K memory types.

 When ‘FLOAT’ data type is entered, it is still possible to designate integer values for
Memory Address parameters (A) and/or (B). Those values are converted to equivalent
floating point values before the comparison is executed.

82 CTI 2500 Series CPU Programming Reference Manual V1.33

Input Function Output

OFF GEQ instruction does not execute OFF

ON

GEQ instruction executes as follows:

 IF (A < B)

 IF (A >= B)

OFF

ON

 Related instructions: CMP, EQU, GTR, LEQ, LESS, NEQ

CTI 2500 Series CPU Programming Reference Manual V1.33 83

 Greater (GTR)

The GTR instruction compares two values (signed integers, unsigned integers, or floating point numbers)
and energizes the Output if the first is greater than (>) the second.

Note:

This instruction is enhanced in 2500 Series CPU to support the use of the floating point number (FLOAT)
data type. The use of this feature is detailed in GREEN text in this section.

You must have 2500 Series CPU firmware V6.18 (or later) and
505 WorkShop V4.60 (or later) as PLC programming software to use this feature.

A > B

TYPE: INT - Signed Integer

UINT - Unsigned Integer

FLOAT - 32-bit Real Number

OutputInput

A: Memory Address A

B: Memory Address B

or Constant

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

TYPE

Description of Operation

The GTR instruction executes each scan the Input is ON.

 The values in Memory Address (A) and (B) are evaluated based on the data type entered in the
‘TYPE’ field in the upper right corner in the instruction box as shown below:

 TYPE Value

 INT 16-bit signed integers
 UINT 16-bit unsigned integers
 FLOAT 32-bit IEEE floating point value (see Note above)

 FLOAT parameters are supported only when ‘FLOAT’ data type is entered.

 Contents of parameter (B) can specify a Word Address or constant (Integer or FLOAT).

 FLOAT values are designated by using a Real Memory Address (i.e, V23.) that occupies
two consecutive PLC words in WX/WY, V, or K memory types.

 When ‘FLOAT’ data type is entered, it is still possible to designate integer values for
Memory Address parameters (A) and/or (B). Those values are converted to equivalent
floating point values before the comparison is executed.

84 CTI 2500 Series CPU Programming Reference Manual V1.33

Input Function Output

OFF GTR instruction does not execute OFF

ON

GTR instruction executes as follows:

 IF (A <= B)

 IF (A > B)

OFF

ON

 Related instructions: CMP, EQU, GEQ, LEQ, LESS, NEQ

CTI 2500 Series CPU Programming Reference Manual V1.33 85

 Less or Equal (LEQ)

The LEQ instruction compares two values (signed integers, unsigned integers, or floating point numbers)
and energizes the Output if the first is less or equal (<=) to the second.

Note:

This instruction is enhanced in 2500 Series CPU to support the use of the floating point number (FLOAT)
data type. The use of this feature is detailed in GREEN text in this section.

You must have 2500 Series CPU firmware V6.18 (or later) and
505 WorkShop V4.60 (or later) as PLC programming software to use this feature.

A <= B

TYPE: INT - Signed Integer

UINT - Unsigned Integer

FLOAT - 32-bit Real Number

OutputInput

A: Memory Address A

B: Memory Address B

or Constant

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

TYPE

Description of Operation

The LEQ instruction executes each scan the Input is ON.

 The values in Memory Address (A) and (B) are evaluated based on the data type entered in the
‘TYPE’ field in the upper right corner in the instruction box as shown below:

 TYPE Value

 INT 16-bit signed integers
 UINT 16-bit unsigned integers
 FLOAT 32-bit IEEE floating point value (see Note above)

 FLOAT parameters are supported only when ‘FLOAT’ data type is entered.

 Contents of parameter (B) can specify a Word Address or constant (Integer or FLOAT).

 FLOAT values are designated by using a Real Memory Address (i.e, V23.) that occupies
two consecutive PLC words in WX/WY, V, or K memory types.

 When ‘FLOAT’ data type is entered, it is still possible to designate integer values for
Memory Address parameters (A) and/or (B). Those values are converted to equivalent
floating point values before the comparison is executed.

86 CTI 2500 Series CPU Programming Reference Manual V1.33

Input Function Output

OFF LEQ instruction does not execute OFF

ON

LEQ instruction executes as follows:

 IF (A > B)

 IF (A <= B)

OFF

ON

 Related instructions: CMP, EQU, GEQ, GTR, LESS, NEQ

CTI 2500 Series CPU Programming Reference Manual V1.33 87

 Less (LESS)

The LESS instruction compares two signed or unsigned integers and energizes the Output if the first is
less than (<) the second.

Note:

This instruction is enhanced in 2500 Series CPU firmware V6.18 to support the use of floating point
number (FLOAT) data type. The use of this feature is detailed in GREEN text in this section.

You must have 2500 Series CPU firmware V6.18 (or later) and
505 WorkShop V4.60 (or later) as PLC programming software to use this feature.

 A < B

TYPE: INT - Signed Integer

UINT - Unsigned Integer

FLOAT - 32-bit Real Number

OutputInput

A: Memory Address A

B: Memory Address B

or Constant

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

TYPE

Description of Operation

The LESS instruction executes each scan the Input is ON.

 The values in Memory Address (A) and (B) are evaluated based on the data type entered in the
‘TYPE’ field in the upper right corner in the instruction box as shown below:

 TYPE Value

 INT 16-bit signed integers
 UINT 16-bit unsigned integers
 FLOAT 32-bit IEEE floating point value (see Note above)

 FLOAT parameters are supported only when ‘FLOAT’ data type is entered.

 Contents of parameter (B) can specify a Word Address or constant (Integer or FLOAT).

 FLOAT values are designated by using a Real Memory Address (i.e, V23.) that occupies
two consecutive PLC words in WX/WY, V, or K memory types.

 When ‘FLOAT’ data type is entered, it is still possible to designate integer values for
Memory Address parameters (A) and/or (B). Those values are converted to equivalent
floating point values before the comparison is executed.

88 CTI 2500 Series CPU Programming Reference Manual V1.33

Input Function Output

OFF LESS instruction does not execute OFF

ON

LESS instruction executes as follows:

 IF (A >= B)

 IF (A < B)

OFF

ON

 Related instructions: CMP, EQU, GEQ, GTR, LESS, NEQ

CTI 2500 Series CPU Programming Reference Manual V1.33 89

 Not Equal (NEQ)

The NEQ instruction compares two values (signed integers, unsigned integers, or floating point numbers)
and energizes the output if the first is not equal to the second.

Note:

This instruction is enhanced in 2500 Series CPU firmware V6.18 to support the use of floating point
number (FLOAT) data type. The use of this feature is detailed in GREEN text in this section.

You must have 2500 Series CPU firmware V6.18 (or later) and
505 WorkShop V4.60 (or later) as PLC programming software to use this feature.

A >= B

TYPE: INT - Signed Integer

UINT - Unsigned Integer

FLOAT - 32-bit Real Number

OutputInput

A: Memory Address A

B: Memory Address B

or Constant

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

TYPE

Description of Operation

The NEQ instruction executes each scan the Input is ON.

 The values in Memory Address (A) and (B) are evaluated based on the data type entered in the
‘TYPE’ field in the upper right corner in the instruction box as shown below:

 TYPE Value

 INT 16-bit signed integers
 UINT 16-bit unsigned integers
 FLOAT 32-bit IEEE floating point value (see Note above)

 FLOAT parameters are supported only when ‘FLOAT’ data type is entered.

 Contents of parameter (B) can specify a Word Address or constant (Integer or FLOAT).

 FLOAT values are designated by using a Real Memory Address (i.e, V23.) that occupies
two consecutive PLC words in WX/WY, V, or K memory types.

 When ‘FLOAT’ data type is entered, it is still possible to designate integer values for
Memory Address parameters (A) and/or (B). Those values are converted to equivalent
floating point values before the comparison is executed.

90 CTI 2500 Series CPU Programming Reference Manual V1.33

Input Function Output

OFF NEQ instruction does not execute OFF

ON

NEQ instruction executes as follows:

 IF (A <> B)

 IF (A = B)

OFF

ON

 Related instructions: CMP, EQU, GEQ, GTR, LEQ, LESS

CTI 2500 Series CPU Programming Reference Manual V1.33 91

 Indexed Matrix Compare (IMC)

The IMC instruction compares the state of a group of (up to 15) discrete points to a predefined bit pattern.
Up to 16 different bit patterns can be specified, and the value in Current Pointer (CUR PTR) field
determines the one used for comparison.

Output

IMC

Compare

Enable

INDEXED MATRIX COMPARE

REF# Instruction Reference No (0-32767) - see Notes

CUR PTR: Memory location holding Step Number

of Bit Pattern to compare to Discrete Pts (V)

STP Step Number of Bit Pattern (1-16)

REF#

Discrete Pt Addresses (X/Y, C, B or Blank)

C X X Y Y Y Y C C Y Y Y X Y Y

1 6 7 3 3 3 4 3 4 4 4 5 1 5 5

2 8 1 7 8 9 0 2 2 8 9 0 0 4 5

3 6 3 1

9

 STP

 1 1 0 1 1 0 0 0 1 0 0 1 1 0 0 0

 2 1 0 0 0 1 1 1 0 0 0 0 1 1 0 1

 3 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0

 4 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1

 5 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0

 6 1 1 0 0 0 0 1 1 0 1 0 0 1 0 1

 7 0 0 1 1 0 1 1 1 0 0 0 1 0 1 1

 8 0 1 1 1 1 1 0 0 0 1 0 1 1 0 1

 16 1 0 1 0 1 1 0 1 0 1 1 0 0 1 0

Bit Pattern Mask (0 = OFF / 1 = ON)

Description of Operation

1. When Enable Input is OFF, the IMC instruction box is reset. The value in the V-Memory
address assigned as CUR PTR is set to 1. The Output is turned OFF..

2. When Enable Input is ON but Compare Input is OFF, the IMC instruction does not execute. The
CUR PTR value can be set to proper Step Number by other logic in RLL program or HMI. The
Output is turned OFF.

3. The IMC instruction executes each scan the Enable Input is ON and Compare Input is ON. The
state (ON/OFF) of the Discrete Points specified in the instruction box is compared to the Bit
Pattern Mask of the Step Number contained in CUR PTR. If a match is found, the Output turns
ON. If no match is detected, the Output turns OFF.

92 CTI 2500 Series CPU Programming Reference Manual V1.33

Input States
Function Output

Enable Compare

OFF Don’t
Care

IMC reset
CUR PTR value set to 1

OFF

ON OFF IMC enabled but does not execute.
CUR PTR value can be modified

OFF

ON ON IMC executes as follows:
State of Discrete Pts compared to Bit Pattern
Mask for Step Number loaded into CUR PTR.

 IF (Bit Patterns match)
 IF (Bit Patterns do not match)

ON
OFF

Notes:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.\

If the value in CUR PTR memory location is out of range for a valid Step Number (1-16),
the Bit Pattern Mask specified for Step Number 16 is used for comparison.

 Related instructions: SMC, STFE, STFN

CTI 2500 Series CPU Programming Reference Manual V1.33 93

 Scan Matrix Compare (SMC)

The SMC instruction compares the current states of a group of discrete points to 16 predefined bit
patterns. Each bit pattern defines a mask to match up to 16 discrete points. If a match is detected, the
Step Number of the matching pattern to written to the memory address specified in the CUR PTR field.

Output

SMC

Compare
SCAN MATRIX COMPARE

REF# Instruction Reference No (0-32767) - see Notes

CUR PTR: Memory location holding Step Number of Bit

 Pattern Mask that matched Discrete Pts State (V)

LAST STEP: Last Bit Pattern Step Mask to be compared (1-16)

STP Step Number of Bit Pattern (1-16)

REF#

Discrete Pt Addresses (X/Y, C, B or Blank)

C X X Y Y Y Y C C Y Y Y X Y Y

1 6 7 3 3 3 4 3 4 4 4 5 1 5 5

2 8 1 7 8 9 0 2 2 8 9 0 0 4 5

3 6 3 1

9

 STP

 1 1 0 1 1 0 0 0 1 0 0 1 1 0 0 0

 2 1 0 0 0 1 1 1 0 0 0 0 1 1 0 1

 3 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0

 4 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1

 5 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0

 6 1 1 0 0 0 0 1 1 0 1 0 0 1 0 1

 7 0 0 1 1 0 1 1 1 0 0 0 1 0 1 1

 8 0 1 1 1 1 1 0 0 0 1 0 1 1 0 1

 16 1 0 1 0 1 1 0 1 0 1 1 0 0 1 0

Bit Pattern Mask (0 = OFF / 1 = ON)

Description of Operation

1. When Enable Input or Compare Input is OFF, the SMC instruction box does not execute. The
value in CUR PTR address remains unchanged. The Output is turned OFF..

2. The SMC instruction executes each scan the Enable Input is ON and Compare Input is ON as
described below:

 Starting at Step Number 1, the state (ON/OFF) of the Discrete Points designated in the
instruction box is compared to the predefined Bit Pattern Mask.

 If no match is detected, the Step Number is incremented and the comparison process is
repeated.

 If a match is found, operation is complete. That Step Number is written to CUR PTR
address and the Output turns ON.

 If bit patterns for all 16 Steps are tested and no match is found, a value of zero is written
to CUR PTR and Output turns OFF.

94 CTI 2500 Series CPU Programming Reference Manual V1.33

Input States
Function

CUR PTR
value

Output

Enable Compare

Don’t
Care

OFF SMC does not execute

Unchanged OFF

ON ON SMC executes.
State of Discrete Pts compared to Bit
Pattern Masks for all Steps numbered 1
thru ‘Last Step’ starting with Step 1.

 IF (Bit Patterns match)

 ELSE
 Bit Patterns do not match
 Operation repeated for next step

 IF (All steps completed with no match)

Matched
Step

Set to ‘0’

ON

OFF

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

 Related instructions: IMC, STFE, STFN

CTI 2500 Series CPU Programming Reference Manual V1.33 95

 Search Table For Equal (STFE)

The STFE instruction finds and reports the next position within a table of a word value that is Equal to the
source word.

Reset

STFE

OutputEnable

WS: Source Word Address

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

SEARCH TABLE FOR EQUAL

TS: Table Start Word Address

N: Length of Table (1-256 words)

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

IN: Table Index Word Address (V, W)

Description of Operation

 The term “Table” simply refers to a group of contiguous memory locations specified by Table Start
Address (TS) and the number (N) of words within table.

1. When Reset Input is OFF, the STFE instruction box is reset. The value in the Table Index
Address (IN) is set to -1. The Output is turned OFF..

2. When Reset Input is ON but Enable Input is OFF, the STFE instruction does not execute. The
Table Index holds is current value unless changed by other logic in RLL program or HMI. The
Output is turned OFF.

3. When both Reset and Enable Inputs are ON, the STFE instruction executes as described:

 The Table Index (IN) increments by 1 and “points” to the next table position that will be
compared to the Source Word (WS). When Enable first transitions OFF-to-ON after STFE
is reset, Table Index equals zero (indicates first position in table). The Table Index range
is from 0 to N-1 where N specifies the number of words in table

 The value of the Source Word (WS) is compared to the word in the table specified by
Table Index (IN). If the values are equal, the Output turns ON for one PLC scan. The
value in Table Index indicates the word position within the table that a match was found.
The (IN) value must be used or saved to another word during the time the Output is ON
since the STFE instruction starts at the next Table Index position on the subsequent scan
to look for the next match as long as both inputs are ON.

 If the Source Word is unequal to the designated word in table, the Table Index
increments by one and next word in table is compared to the Source Word. This
continues until a match is found or the Table Index reaches the end of the table.

 When the entire table has been searched, the Output turns OFF and the value of the
Table Index equals the last table position (N-1). The STFE instruction must be reset
(Reset Input OFF) in order to execute again from the start of the table.

96 CTI 2500 Series CPU Programming Reference Manual V1.33

Input States
Function

Table
Index

Output

Reset Enable

OFF Don’t
Care

STFE held in reset.

 -1 OFF

ON OFF STFE does not execute Unchanged OFF

ON ON STFE executes.

 IN increments (IN = IN + 1).
 WHILE (IN < N+1)
 Source Word (WS) is compared to the
 word in table indicated by (IN)

 IF (Word Values Match)

 (Execution resumes next scan)

 END_WHILE

 Index reached end of table (IN = N-1)

Matched
Step (IN)

(N-1)

ON

OFF

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

 Related instructions: IMC, SMC, STFN

CTI 2500 Series CPU Programming Reference Manual V1.33 97

 Search Table For Not Equal (STFN)

The STFN instruction finds and reports the next position within a table of a word value that is Unequal to
a source word.

Reset

STFN

OutputEnable

WS: Source Word Address

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

SEARCH TABLE FOR NOT EQUAL

TS: Table Start Word Address

WO: Output Word Address

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

IN: Table Index Word Address (V, W)

N: Length of Table (1-256 words)

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

Description of Operation

 The term “Table” simply refers to a group of contiguous memory locations specified by Table Start
Address (TS) and the number (N) of words within table.

1. When Reset Input is OFF, the STFN instruction box is reset. The value in the Table Index
Address (IN) is set to -1. The Output is turned OFF.

2. When Reset Input is ON but Enable Input is OFF, the STFN instruction does not execute. The
Table Index holds is current value unless changed by other logic in RLL program or HMI. The
Output is turned OFF.

3. When both Reset and Enable Inputs are ON, the STFN instruction executes as described:

 The Table Index (IN) increments by 1 and “points” to the next table position that will be
compared to the Source Word (WS). When Enable first transitions OFF-to-ON after
STFN is reset, Table Index equals zero (indicates first position in table). The Table Index
range is from 0 to N-1 where N specifies the number of words in table

 The value of the Source Word (WS) is compared to the word in the table specified by
Table Index (IN). If the values are not equal, the Output turns ON for one PLC scan. The
non-matching value at that Table Index is then copied into the Output Word Address
(WO), and the Table Index indicates the word position within the table that a non-
matching value was found.

The (IN) value must be used or saved to another word during the time the Output is ON
since the STFN instruction starts at the next Table Index position on the subsequent scan
to look for the next mismatch as both inputs are ON.

 If the Source Word is equal to the designated word in the table, the Table Index
increments by one and next word in table is compared to the Source Word. This
continues until a mismatch is found or the Table Index reaches the end of the table.

 When the entire table has been searched, the Output turns OFF and the value of the
Table Index equals the last table position (N-1). The STFN instruction must be reset
(Reset Input OFF) in order to execute again from the start of the table.

98 CTI 2500 Series CPU Programming Reference Manual V1.33

Input States
Function

Table
Index

Output
Word

Output

Reset Enable

OFF Don’t
Care

STFN held in reset

 -1 0 OFF

ON OFF STFN does not execute Unchanged Unchanged OFF

ON ON STFN executes

 IN increments (IN = IN + 1).
 WHILE (IN < N+1)
 Source Word (WS) is compared to
 the word in table indicated by (IN)

 IF (Word Values Unequal)
 WO = TS[IN]

 (Execution resumes next scan)

 END_WHILE

 Index reached end of table (IN = N-1)

Not Equal
Index (IN)

(N-1)

Table
Index value

ON

OFF

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

 Related instructions: IMC, SMC, STFE

CTI 2500 Series CPU Programming Reference Manual V1.33 99

3.7 Bit Operations

These instructions perform bit manipulation within a memory location.

 Bit Clear (BITC)

The BITC instruction sets a specified bit location OFF (value = 0).

BITC
OutputInput

A: Word Address

N: Bit Position (1-16)

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

BIT CLEAR

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

Description of Operation

The BITC instruction executes each scan the Input is ON.

1. The specified bit of the Word Address (A) is turned OFF and Output is turned ON

2. Bit Position is numbered starting with MSB = 1 and LSB = 16.

Input Function Output

OFF BITC instruction does not execute OFF

ON

BITC instruction executes.
Specified Bit is turned OFF

ON

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

 Related instructions: BITP, BITS, Coils

100 CTI 2500 Series CPU Programming Reference Manual V1.33

 Bit Set (BITS)

The BITS instruction sets a specified bit location ON (value = 1).

BITC
OutputInput

A: Word Address

N: Bit Position (1-16)

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

BIT CLEAR

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

Description of Operation

The BITS instruction executes each scan the Input is ON.

1. The specified bit of the Word Address (A) is turned ON and Output is turned ON..

2. Bit Position is numbered starting with MSB = 1 and LSB = 16.

Input Function Output

OFF BITS instruction does not execute OFF

ON

BITS instruction executes.
Specified Bit is turned ON

ON

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

 Related instructions: BITC, BITP, Coils

CTI 2500 Series CPU Programming Reference Manual V1.33 101

 Bit Pick (BITP)

The BITP instruction reports the state (ON/OFF) of a specified bit.

BITP
OutputInput

A: Word Address to be examined

N: Bit Position (1-16)

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

BIT PICK

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

Description of Operation

The BITP instruction executes each scan the Input is ON.

1. The specified bit of the Word entered in Memory Address field is examined.

2. BITP Output reports state of bit as follows:

 Output turns ON if bit is ON

 Output turns OFF if bit is OFF

3. Bit Position is numbered starting with MSB = 1 and LSB = 16.

Input Function Output

OFF BITP instruction does not execute OFF

ON

BITP instruction executes as follows:

 IF (Specified Bit is ON)
 IF (Specified Bit is OFF)

ON
OFF

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

 Related instructions: BITC, BITS, Contacts

102 CTI 2500 Series CPU Programming Reference Manual V1.33

 Bit Shift Register (SHRB)

The SHRB instruction creates a bit shift register up to 1023 bits in length. The shift register can be
specified to use the discrete image register (Y) or control relay (C) memory.

BIT SHIFT REGISTER

SHR: Shift Register Reference Number

(see Notes)

IR: Starting Address for Bit Shift Register

(Y, C, B)

N: Number of bits included in

Shift Register (1-1023)

Output

Enable

Clock

Data

Description of Operation

1. When Enable Input is OFF, the SHRB instruction box is reset. All bits in the Shift Register are set
to zero (OFF) and the Output is turned OFF..

2. When Enable Input is ON, the SHRB instruction is enabled.

a) If Clock Input transitions OFF-to-ON:

 The last (highest-numbered) bit in the Shift Register is shifted out. The SHRB instruction
Output is set to the state (ON/OFF) of this bit.

 Each bit in the Shift Register is shifted up (to the next higher address).

 The state of the Data Input is moved into the first (lowest) Shift Register bit.

b) If Clock Input does not transition OFF-to-ON:

 The SHRB instruction Output is set to the state of the last bit in the Shift Register.

 The Shift Register data does not shift, and no data is moved in/out of the SHRB.

Input States
Function Output

Enable Clock Data

OFF Don’t Care Don’t
Care

SHRB disabled.
All Shift Register bits set OFF

OFF

ON OFF-to-ON
transition

Don’t
Care

All bits shifted up one position.
State of Data Input moved into
first position in Shift Register.

Set to state of last
bit shifted out of
Shift Register

ON Don’t Care
(no transition
OFF-to-ON)

Don’t
Care

Data not shifted into, out of, or
within Shift Register.

Set to state of last
bit in Shift
Register

CTI 2500 Series CPU Programming Reference Manual V1.33 103

Note:

The Reference Number assigned to the instruction box must be unique for all
Shift Register instructions (SHRB, SHRW) entered in the PLC program.

The amount of Shift Register Memory that is assigned in PLC Memory Configuration determines
 the number of Shift Register instructions allowed in the RLL program.

 One Byte of Shift Register Memory is used for each Shift Register instruction.

 Related instructions: SHRW, WROT

104 CTI 2500 Series CPU Programming Reference Manual V1.33

 Word Shift Register (SHRW)

The SHRW instruction creates a word shift register of up to 1023 contiguous V-memory locations. A
designated word memory address holds value to be “shifted into” the shift register.

Reset

Clock

Enable

WORD SHIFT REGISTER

Output

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

SHR: Shift Register Reference Number

(see Notes)

A: Address used as input into

Word Shift Register

N: Number of Words in Shift Register

(1-1023)

B: Starting Address for Word Shift

Register (V, W)

Description of Operation

1. When Reset Input is OFF, the SHRW instruction box is reset. All words in the Shift Register are
set to a value of zero, and the Output is turned OFF..

2. When Reset Input is ON and Enable Input is ON, the SHRW instruction is enabled.

If Clock Input transitions OFF-to-ON:

 The last (highest-numbered) word in the Shift Register is shifted out and discarded..

 Each word in the Shift Register is shifted up (to the next higher address).

 The value of Memory Address (A) is copied into the first word in Shift Register (specified
as Memory Address (B)).

 The SHRW Output is turned ON for one PLC scan.

3. If Enable Input turns OFF while Reset Input is ON, the SHRW instruction will not execute.
However, values of all words in the Shift Register are maintained.

Input States
Function Output

Reset Enable Clock

OFF Don’t
Care

Don’t Care SHRW reset.
All words in Shift Register are
cleared to ‘0’

OFF

ON ON Don’t Care
(no transition
OFF-to-ON)

Data not shifted into, out of, or
within Shift Register.

OFF

ON OFF Don’t Care

ON ON OFF-to-ON
transition

Last word in Shift Register is
discarded. All other words in Shift
Register are shifted one position.
Value of Input Word is moved into
first word in Shift Register.

Turns ON for
exactly one
PLC scan

CTI 2500 Series CPU Programming Reference Manual V1.33 105

Note:

The Reference Number assigned to the instruction box must be unique for all
Shift Register instructions (SHRB, SHRW) entered in the PLC program.

The amount of Shift Register Memory that is assigned in PLC Memory Configuration determines
 the number of Shift Register instructions allowed in the RLL program.

 One Byte of Shift Register Memory is used for each Shift Register instruction.

 Related instructions: SHRB, WROT

106 CTI 2500 Series CPU Programming Reference Manual V1.33

 Word Rotate (WROT)

The WROT instruction modifies a word memory location by shifting each 4-bit segment a designated
number of times.

WROT
OutputInput

A: Word Address to be rotated

N: Number of shifts (1-3)

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

WORD ROTATE

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

Description of Operation

The WROT instruction performs a “Rotate Right” operation as shown below.

Bits 1-4 Bits 5-8 Bits 9-12 Bits 13-16

Bits 1-4 Bits 5-8 Bits 9-12 Bits 13-16

For N = 2:

Bits 1-4 Bits 5-8 Bits 9-12 Bits 13-16

For N = 3:

For N = 1:

CTI 2500 Series CPU Programming Reference Manual V1.33 107

The WROT instruction executes each scan the Input is ON:

 Each 4-bit segment in the designated word is rotated from 1-3 times as specified by the value
entered in ‘Number of Shifts’ (N) field.

 If Word Address (A) contains value other than zero, the WROT Output turns ON.

 If Word Address (A) contains value of zero, the WROT Output turns OFF

.

Input Function Output

OFF WROT instruction does not execute OFF

ON

WROT instruction executes.
Each 4-bit segment of designated word is rotated to the
right from 1-3 times as specified by “Number of Shifts (N)”
 IF (Word Address (A) = 0)
 IF (Word Address (A) <> 0)

OFF
ON

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

 Related instructions: SHRB, SHRW

108 CTI 2500 Series CPU Programming Reference Manual V1.33

3.8 Math / Logic Operations

These instructions perform integer mathematical operations.

 Absolute Value (ABSV)

The ABSV instruction computes the absolute value of a signed integer and places result in place of the
original value:

ABSV
OutputInput

A: Word Address where operation

is executed

REF#

REF# Instruction Reference Number

(0-65535) - see Notes

ABSOLUTE VALUE

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

Description of Operation

The ABSV instruction executes each scan the Input is ON.

 Contents of Word Address (A) are evaluated as a 16-bit signed integer.
Range: -32768 thru +32767

 Absolute Value operation: A = | A |

 | A | = A if A >= 0
 | A | = -A if A < 0

Input Function Output

OFF ABSV instruction does not execute OFF

ON

ABSV instruction executes as follows:

 IF (-32767 <= A <= +32767)
 A = |A|

 ELSE
 A unchanged (if A = -32768)

ON

OFF

Note:

The Reference Number assigned to the instruction box (Constant: 0-65535) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: ADD, CMP, DIV, MUL, SQRT, SUB

CTI 2500 Series CPU Programming Reference Manual V1.33 109

 Addition (ADD)

The ADD instruction computes the sum of two signed integers.

ADD

OutputInput

A: Addend-1 Word Address

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

A + B = R

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

B: Addend-2 - Word Address

or Constant

R: Word Address for Result (Sum)

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

Description of Operation

The ADD instruction executes (R = A + B) each scan the Input is ON.

 The Addend values in (A) and (B) are evaluated as 16-bit signed integers.

 Contents of (B) can contain a Word Address or integer constant.

 If the result is within the valid range for a signed integer (-32768 thru +32767), the Sum is
written to Address (R) and the Output turns ON.

 If the result is outside of the valid range for a signed integer, an overflow condition occurs. The
result is then written as the 16-bit truncated Sum (16 LSB) and the Output turns OFF.

Input Function Output

OFF ADD instruction does not execute OFF

ON

ADD instruction executes as R = A + B.

 IF (-32768 <= R <= +32767)
 Result written to Address (R)

 IF (R < -32768) OR (R > +32767)
 16-bit truncated result written to Address (R)

ON

OFF

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: ABSV, DIV, MUL, SQRT, SUB

110 CTI 2500 Series CPU Programming Reference Manual V1.33

 Subtraction (SUB)

The SUB instruction computes the difference between two signed integers.

SUB

OutputInput

A: Number Subtracted from -

Word Address or Constant

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

A - B = R

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

B: Number to Subtract -

Word Address or Constant

R: Word Address for Result

(Difference)

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

Description of Operation

The SUB instruction executes (R = A – B) each scan the Input is ON.

 The values in (A) and (B) are evaluated as 16-bit signed integers.

 Either (A) or (B) can contain an integer constant. However, it is invalid for constants to be
entered in both fields.

 If the result is within the valid range for a signed integer (-32768 thru +32767), the Difference is
written to Address (R) and the Output turns ON.

 If the result is outside of the valid range for a signed integer, an overflow condition occurs. The
16-bit truncated result (16 LSB) is written to Address (R) and the Output turns OFF.

Input Function Output

OFF SUB instruction does not execute OFF

ON

SUB instruction executes as R = A - B.

 IF (-32768 <= R <= +32767)
 Result written to Address (R)

 IF (R < -32768) OR (R > +32767)
 16-bit truncated result written to Address (R)

ON

OFF

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

CTI 2500 Series CPU Programming Reference Manual V1.33 111

 Multiplication (MUL)

The MUL instruction computes the product of two signed integers and stores the result as a long (32-bit)
signed integer.

MUL

OutputInput

A: Word Address

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

A * B = R

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

B: Multiplier - Word Address or

Constant

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

R (2): Address of Long Word (32-bit)

used for Product

Description of Operation

 The MUL instruction executes (R = A * B) each scan the Input is ON.

 The values to multiply are read as 16-bit signed integers from Memory Address (A) and either
Word Address (B) or constant depending on the entry in (B).

 The multiplication is completed and Product is stored as a Long Word (32-bit signed integer)
into Word Addresses (R) and (R+1). Address (R) contains the 15 most significant bits plus sign,
and Word (R+1) holds the 16 least significant bits.
Range of Long Word: -2,147,483, 648 thru +2,147,483,647

 Output is turned ON.

Input Function Output

OFF MUL instruction does not execute OFF

ON

MUL instruction executes.

The 16-bit signed integers from (A) and (B) are multiplied.

The Product is written as a Long Word (32-bit signed
integer).

Result Word (R) contains the 16 MSB

Result Word (R+1) contains the 16 LSB

ON

112 CTI 2500 Series CPU Programming Reference Manual V1.33

Value = +896

0 0 0 0 0 0 0 0 0 0 0 1 0 0 00V211:

1 1 1 1 0 0 0 0 00V212: 1 0 1 1 0 0

 R: Product (32-bit signed integer)

MSB

LSB

 Value =

+1105664

 B: 16-bit signed integer constant

0 0 0 0 0 0 0 0 00V84: 0 0 1 1 1 0

 A: 16-bit signed integer

Value = +1234

MUL

A: V84

 19

A * B = R

B: 1234

R (2): V211

MUL Example:

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: ABSV, ADD, DIV, SQRT, SUB

CTI 2500 Series CPU Programming Reference Manual V1.33 113

 Division (DIV)

The DIV instruction performs an integer division operation. A long (32-bit) signed integer is divided by a
16-bit signed integer, and the quotient and remainder are stored.

DIV

OutputInput

A (2): Dividend Address - Long Word

(32-bit) or Constant

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

A / B = R

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

B: Divisor Address or Constant

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

R (2): Starting Address for Results

(Uses 2 Consecutive Words)

Description of Operation

 The DIV instruction executes (R = A / B) each scan the Input is ON.

1. The Dividend is read from a memory address or constant depending on the contents in (A).

 If (A) contains a Word Address, the Dividend is read as a Long Word (32-bit signed
integer). Word (A) contains the 15 most significant bits plus sign, and Word (A+1) holds
the 16 least significant bits. Range of Long Word: -2,147,483, 648 thru +2,147,483,647.

 Otherwise, (A) is read as a 16-bit signed integer constant.
 Range: -32768 thru +32767.

2. The Divisor is read from a memory address or constant depending on the contents in (B).

 If (B) contains a Word Address, the Divisor is read as a 16-bit signed integer.

 Otherwise, (B) is read as a 16-bit signed integer constant.

It is invalid for both (A) and (B) to be entered as constants.

3. The division is completed and results are stored based on the following conditions:

 If the Divisor is equal to zero, the operation is aborted. The Result Words (R) and (R+1)
are unchanged, and the Output is turned OFF

 If the Quotient is within the range of a 16-bit signed integer, the Quotient is written to
Word Address (R). The Remainder to written to Address (R+1). The Output is turned ON.

 If the Quotient is invalid (greater than +32767 or less than -32768), the operation is
aborted. The Result Words (R) and (R+1) are unchanged, and Output is turned OFF.

114 CTI 2500 Series CPU Programming Reference Manual V1.33

Input Function Output

OFF DIV instruction does not execute OFF

ON

DIV instruction executes.

IF (Divisor (B) <> 0):
 Divide operation (A/B) is performed.
 IF (-32768 <= Quotient <= +32767)
 Quotient written to Result Address (R)
 Remainder written to Address (R+1)
 IF (Quotient < -32768) OR (Quotient > +32767)
 Divide operation aborted.
 Result Addresses (R and R+1) unchanged.

IF (Divisor (B) = 0)
 Divide operation aborted.
 Result Addresses (R and R+1) unchanged.

ON

OFF

OFF

R: Quotient (16-bit signed integer)

R+1: Remainder (16-bit signed integer)

DIV

A (2): V78

 23

A / B = R

B: K14

R (2): V101

B: Divisor (16-bit signed integer)

1 1 1 1 0 1 0 1 10K14 11 1 1 1 0 Value = -93

0 1 0 0 0 0 0 1 01V101 0 0 1 0 1 0 Value = - 4742

0 0 0 0 0 0 0 0 01V102 1 1 1 1 1 1 Value = +87

0 0 0 0 0 0 0 0 0 0 0 0 0 1 01V78:

1 1 1 0 0 0 0 0 11V79: 0 1 1 1 0 0

 A: Dividend (32-bit signed integer)

MSB

LSB

 Value =

+441093

DIV Example:

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

CTI 2500 Series CPU Programming Reference Manual V1.33 115

 Square Root (SQRT)

The SQRT instruction computes the integer square root of a long (32-bit) integer.

SQRT

OutputInput

A (2): Long Word Address

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

B = SQRT(A)

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

B: Word Address for Result

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

Description of Operation

 The SQRT instruction executes (R = SQRT(A)) each scan the Input is ON.

The operation finds the positive integer Square Root of the Long Word (32-bit) integer value stored in
Memory Addresses (A) and (A+1).and writes results based on the following:

 The SQRT instruction reports only the integer portion of the Square Root. Any fractional
content is truncated.

 Example: Actual Square Root of 118 is = 10.86

 SQRT instruction reports Result = 10

 If the integer Square Root is within valid range of a positive 16-bit signed integer
(0 thru +32767), the result is written to Address (B) and the Output turns ON.

 If the integer Square Root is outside of the valid range, Address (B) is unchanged and the
Output turns OFF.

Input Function Output

OFF SQRT instruction does not execute OFF

ON

SQRT instruction executes.
The integer Square Root of Long Word (32-bit integer).stored in
Memory Address (A) and (A+1) is computed.

IF (0 <= Result <= +32767)
 Sq. Root Result is written as 16-bit integer to Address (B)

ELSE
 Address (B) goes to 0.

ON

OFF

116 CTI 2500 Series CPU Programming Reference Manual V1.33

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: ABSV, ADD, DIV, MUL, SUB

CTI 2500 Series CPU Programming Reference Manual V1.33 117

 Binary to BCD Conversion (CBD)

The CBD instruction converts the binary representation of a 16-bit integer to its equivalent Binary Coded
Decimal (BCD) value.

CBD

OutputInput

BIN: Word Address of integer in

Binary representation

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

CONVERT BINARY TO BCD

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

BCD (2) Address for Long Word

(32-bit) BCD value

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

Description of Operation

 The CBD instruction executes each scan the Input is ON:

 The value in (BIN) is evaluated as a 16-bit signed integer.
 If the value is in the positive range (0 to 32767), the BCD equivalent value is written to

Addresses (BCD) and (BCD+1) as shown below and the Output turns ON.

 Each BCD digit occupies four bits and is written into two contiguous memory locations as
shown below.

Bits 5-8Bits 1-4 Bits 9-12 Bits 13-16Address BCD:

Unused Unused Unused Ten

Thousands

Bits 5-8Bits 1-4 Bits 9-12 Bits 13-16Address BCD+1:

Thousands Hundreds Tens Ones

 If the value in (BIN) is negative, the BCD conversion is aborted. The values in Addresses (BCD)
and (BCD+1) are unchanged and the Output turns OFF.

.

118 CTI 2500 Series CPU Programming Reference Manual V1.33

Input Function Output

OFF CBD instruction does not execute OFF

ON

CBD instruction executes.

IF (0 <= BIN <= +32767)
 The Binary value of (BIN) is converted to its BCD
 equivalent and written to (BCD) and (BCD+1)

IF (BIN < 0)
 CBD operation is aborted.

ON

OFF

CBD

BIN: V400

 1

CONVERT BINARY TO BCD

BCD (2) V500

0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

0 0 0 0 0 0 0 0 01

000 2

6 3 9 4

V500:

V501: 1 1 1 1 1 1

V400: 0 0 0 0 0 0 0 011 1 1 1 1 1 1

Integer Value = +26394

CBD Example:

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: CDB

CTI 2500 Series CPU Programming Reference Manual V1.33 119

 BCD to Binary Conversion (CDB)

The CDB instruction converts one to four Binary Coded Decimal (BCD) digits within a word to its
equivalent binary integer value.

CDB

OutputInput

BCD: Word Address of BCD value

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

CONVERT BCD TO BINARY

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

BIN Word Address of integer in

Binary representation

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

N Number of BCD digits to convert

(1-4)

Description of Operation

 The CDB instruction executes each scan the Input is ON:

 The value in (N) determines the number of BCD digits to convert. The number of BCD digits are
counted from the least significant digit (in Bits 13-16) to most significant digit (in Bits 1-4) as
shown below:

Bits 5-8Bits 1-4 Bits 9-12 Bits 13-16

BCD Digit Count: Digit 2Digit 4 Digit 3 Digit 1

 If the Input Word Address (BCD) contains a valid BCD value (0-9) in each 4-bit segment for the
number of specified BCD digits (N), the equivalent binary integer is written to Output Word
Address (BIN) and the Output turns ON.

 If any segments in Input Word Address (BCD) marked for conversion are not valid, the BCD-to-
Binary conversion is aborted. The Output Address (BIN) is unchanged and the Output turns
OFF.

120 CTI 2500 Series CPU Programming Reference Manual V1.33

Input Function Output

OFF CDB instruction does not execute OFF

ON

CDB instruction executes.

IF ((BCD) contains (N) valid BCD digits)
 The specified number of BCD digits of (N) is converted to
 its Binary integer equivalent and written to (BIN)

IF ((N) digits in (BCD) are not valid BCD values)
 CDB operation is aborted.

ON

OFF

0 0 0 0 0 0 0 0 1

836 5

11 1 101 1

CDB

BCD: WX17

 2

CONVERT BCD TO BINARY

BIN: V152

N: 3

3 BCD Digits

WX17:

V152: 0 0 0 00 0 1 0 1

Integer Value = +385

0 0 0 1 1 1 0

CDB Example:

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: CBD

CTI 2500 Series CPU Programming Reference Manual V1.33 121

3.9 Logic Operations

These instructions perform Boolean logic operations.

 Word AND (WAND)

The WAND instruction performs a Bitwise AND operation on corresponding bits of two word memory
locations.

WAND

OutputInput

A: Word Address 1

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

WORD AND

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

B: Word Address 2 or Constant

R: Word Address for Result

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

Description of Operation

 The WAND instruction executes each scan the Input is ON:

 A Bitwise AND is performed on values specified in locations (A) and (B). A Bitwise AND
operation means each bit in (A) is logically ANDed to the corresponding bit in (B). The result in
stored in Address (R).

 The result of the AND operation is shown in the following figure:

A B C.AND. =

.AND.

.AND.

.AND.

.AND.

1

1

1 1 1

0 0 0

0

00

0

AND Logic Table:

 If the result is non-zero, the Output turns ON.

Input Function Output

OFF WAND instruction does not execute OFF

ON

WAND instruction executes as R = A .AND. B
Performs Bitwise AND operation on (A) and (B) and
stores results in (R).

 IF (R <> 0)
 IF (R = 0)

ON
OFF

122 CTI 2500 Series CPU Programming Reference Manual V1.33

 WAND

A: V68

10
 WORD AND

B: V29

R : V71

1 1 1 1 0 1 0 1 10A (V68): 11 1 1 1 0

1 1 1 0 0 0 0 1 01B (V29): 0 0 1 0 1 0

1 1 1 0 0 0 0 1 00R (V71): 0 0 1 0 1 0

WAND Example:

Bit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: WOR, WXOR

CTI 2500 Series CPU Programming Reference Manual V1.33 123

 Word OR (WOR)

The WOR instruction performs a Bitwise OR operation on on corresponding bits of two word memory
locations.

 WOR

OutputInput

A: Word Address 1

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

WORD OR

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

B: Word Address 2 or Constant

R: Word Address for Result

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

Description of Operation

 The WOR instruction executes each scan the Input is ON:

 A Bitwise OR is performed on values specified in locations (A) and (B). A Bitwise OR operation
means each bit in (A) is logically ORed to the corresponding bit in (B). The result in stored in
Address (R).

 The result of the OR operation is shown in the following figure:

A B C .OR. =

 .OR.

 .OR.

 .OR.

 .OR.

1

1

1 1 1

0 0 0

1

10

0

 OR Logic Table:

 If the result is non-zero, the Output turns ON.

 WOR

A: V16

 4

 WORD OR

B: K21

R : WY9

0 0 0 1 0 0 1 1 00A (V16): 10 1 0 1 0

0 1 0 0 0 1 0 1 01B (K21): 0 0 1 0 1 0

0 1 1 1 0 1 1 1 01R (WY9): 0 1 1 0 1 0

WOR Example:

Bit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

124 CTI 2500 Series CPU Programming Reference Manual V1.33

Input Function Output

OFF WOR instruction does not execute OFF

ON

WOR instruction executes as R = A .OR. B
Performs Bitwise OR operation on (A) and (B) and
stores results in (R).

 IF (R <> 0)
 IF (R = 0)

ON
OFF

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: WAND, WXOR

CTI 2500 Series CPU Programming Reference Manual V1.33 125

 Word Exclusive-OR (WXOR)

The WXOR instruction performs a Bitwise Exclusive OR (XOR) operation on corresponding bits of two
word memory locations.

 WXOR

OutputInput

A: Word Address 1

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

WORD XOR

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

B: Word Address 2 or Constant

R: Word Address for Result

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

Description of Operation

 The WXOR instruction executes each scan the Input is ON:

 A Bitwise Exclusive-OR is performed on values specified in locations (A) and (B), meaning
each bit in (A) is logically XORed to the corresponding bit in (B). The result in stored in Address
(R).

 The result of the Exclusive-OR operation is shown in the following figure:

A B C.XOR. =

.XOR.

.XOR.

.XOR.

.XOR.

1

1

1 1 0

0 0 0

1

10

0

XOR Logic Table:

 If the result is non-zero, the Output turns ON.

126 CTI 2500 Series CPU Programming Reference Manual V1.33

 WXOR

A: V113

 10

 WORD XOR

B: V148

R : V35

0 0 1 0 1 0 1 1 10A (V113): 01 1 0 1 0

0 1 0 0 0 0 1 1 01B (V148): 0 1 1 0 1 0

0 1 1 0 1 0 0 0 11R (V35): 1 0 1 0 0 0

WXOR Example:

Bit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input Function Output

OFF WXOR instruction does not execute OFF

ON

WXOR instruction executes as R = A .XOR. B
Performs Bitwise Exclusive-Or operation on (A) and (B)
and stores results in (R).

 IF (R <> 0)
 IF (R = 0)

ON
OFF

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: WAND, WOR

CTI 2500 Series CPU Programming Reference Manual V1.33 127

 Table AND (TAND)

The TAND instruction performs a Bitwise AND operation on corresponding bits within two tables.

TAND

OutputInput

T1: Starting Address for Table-1

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

TABLE AND

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

T2: Starting Address for Table-2

N: Length of Tables (1-256 words)

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

TD: Starting Address for Results

(Destination) Table.

Can be same as T1 or T2.

Description of Operation

The term “Table” simply refers to a group of contiguous memory locations specified by Table Start
Address (T1, T2, and TD) and the number (N) of words within table.

The TAND instruction executes each scan the Input is ON:

 A Bitwise AND is performed on contents of specified table locations (T1) and (T2). Each bit of
each word within the two tables is logically ANDed, and the result in stored in the
corresponding location within table specified by the Destination Table Address (TD).

 The result of the AND operation is shown in the following figure:

T1 T2 TD.AND. =

.AND.

.AND.

.AND.

.AND.

1

1

1 1 1

0 0 0

0

00

0

AND Logic Table:

 The operation is performed across the entire length of specified tables each scan

 The Output turns ON.

Input Function Output

OFF TAND instruction does not execute OFF

ON

TAND instruction executes as TD = T1 .AND.
Performs Bitwise AND operation on each bit of each word
within Tables (T1) and (T2) and writes results into
Destination Table (TD).

ON

128 CTI 2500 Series CPU Programming Reference Manual V1.33

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: WAND, TCPL, TOR, TXOR, WTTA

CTI 2500 Series CPU Programming Reference Manual V1.33 129

 Table OR (TOR)

The TOR instruction performs a Bitwise OR operation on corresponding bits within two tables.

TOR

OutputInput

T1: Starting Address for Table-1

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

TABLE OR

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

T2: Starting Address for Table-2

N: Length of Tables (1-256 words)

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

TD: Starting Address for Results

(Destination) Table.

Can be same as T1 or T2.

Description of Operation

The term “Table” simply refers to a group of contiguous memory locations specified by the Table Start
Address (T1, T2, and TD) and the number (N) of words within table.

 The TOR instruction executes each scan the Input is ON:

 A Bitwise OR is performed on contents of specified table locations (T1) and (T2). Each bit of
each word within the two tables is logically ORed, and the result in stored in the corresponding
location within table specified by the Destination Table Address (TD).

 The result of the OR operation is shown in the following figure:

A B C .OR. =

 .OR.

 .OR.

 .OR.

 .OR.

1

1

1 1 1

0 0 0

1

10

0

 OR Logic Table:

 The operation is performed across the entire length of specified tables each scan

 The Output turns ON.

Input Function Output

OFF TOR instruction does not execute OFF

ON

TOR instruction executes as TD = T1 .OR. T2
Performs Bitwise OR operation on each bit of each word
within Tables (T1) and (T2) and writes results into
Destination Table (TD).

ON

130 CTI 2500 Series CPU Programming Reference Manual V1.33

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: WOR, TAND, TCPL, TXOR

CTI 2500 Series CPU Programming Reference Manual V1.33 131

 Table Exclusive-OR (TXOR)

The TXOR instruction performs a Bitwise Exclusive-OR (XOR) operation on corresponding bits within two
tables.

TXOR

OutputInput

T1: Starting Address for Table-1

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

TABLE XOR

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

T2: Starting Address for Table-2

N: Length of Tables (1-256 words)

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

TD: Starting Address for Results

(Destination) Table.

Can be same as T1 or T2.

Description of Operation

The term “Table” simply refers to a group of contiguous memory locations specified by the Table Start
Address (T1, T2, and TD) and the number (N) of words within table.

The TXOR instruction executes each scan the Input is ON:

 A Bitwise Exclusive-OR is performed on contents of specified table locations (T1) and (T2).
Each bit of each word within the two tables is logically XORed, and the result in stored in the
corresponding location within table specified by the Destination Table Address (TD).

 The result of the XOR operation is shown in the following figure:

A B C.XOR. =

.XOR.

.XOR.

.XOR.

.XOR.

1

1

1 1 0

0 0 0

1

10

0

XOR Logic Table:

 The operation is performed across the entire length of specified tables each scan

 The Output turns ON.

Input Function Output

OFF TXOR instruction does not execute OFF

ON

TXOR instruction executes as TD = T1 .XOR. T2
Performs Bitwise Exclusive-OR operation on each bit of
each word within Tables (T1) and (T2) and writes results
into Destination Table (TD).

ON

132 CTI 2500 Series CPU Programming Reference Manual V1.33

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: WXOR, TAND, TCPL, TOR

CTI 2500 Series CPU Programming Reference Manual V1.33 133

 Table Complement (TCPL)

The TCPL instruction performs a logical NOT operation (inverts the state) of all bits within a table.

TCPL

OutputInput

TS: Starting Address for Source Table

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

TABLE COMPLEMENT

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

TD: Starting Address for Results

(Destination) Table.

Can be same as TS

N: Length of Tables (1-256 words)

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

Description of Operation

The term “Table” simply refers to a group of contiguous memory locations specified by the Table Start
Address (TS and TD) and the number (N) of words within table.

The TCPL instruction executes each scan the Input is ON

 A Logical NOT is performed on all bits contained in Source Table (TS). Each bit of each word
within the table is inverted, and the result in stored in the corresponding location within the
Destination Table (TD).

 Each bit with state of zero (OFF) is inverted to one (ON).
Each bit with state of one (ON) is inverted to zero (OFF).

 The operation is performed across the entire length of specified table each scan

 The Output turns ON.

Input Function Output

OFF TCPL instruction does not execute OFF

ON

TCPL instruction executes as TD = NOT(TS).
Inverts each bit of each word within Source Table (TS) and
writes results into Destination Table (TD).

ON

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: NOT, TAND, TOR, TXOR

134 CTI 2500 Series CPU Programming Reference Manual V1.33

 Word-to-Table AND (WTTA)

The WTTA instruction performs a Bitwise AND operation on corresponding bits of a word memory
location and specified word position within a table.

WTTA

OutputEnable

IN: Address for Table Index (V, W)

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

WORD-TO-TABLE AND

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

TS: Starting Addr for Source Table

N: Length of Tables (1-256 words)

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

TD: Starting Addr for Dest Table

Can be same as TS.

WS: Starting Addr for Source Word

Reset

Description of Operation

The term “Table” simply refers to a group of contiguous memory locations specified by the Table Start
Address (TS and TD) and the number (N) of words within table.

1. When Reset Input is OFF, the WTTA instruction box is reset. The value in the Table Index
Address (IN) is set to zero. The Output is turned OFF.

2. When Reset Input is ON but Enable Input is OFF, the WTTA instruction does not execute. The
Table Index holds its current value unless changed by other logic in RLL program or HMI. The
Output is turned OFF.

3. When both Reset and Enable Inputs are ON, the WTTA instruction executes.

4. The value of Table Index (IN) designates the position within the Source Table (TS) for the word
to be used in the WTTA operation. The Table Index represents an offset into the table. A value
of 0 indicates the first word position in table, and the Table Index range is from 0 to N-1 where
N specifies the number of words in table.

 If Table Index is valid (between 0 and N-1, inclusive), WTTA instruction executes.

 If Table Index is invalid, the operation aborts and Output turns OFF.

5. A Bitwise AND is performed on contents of Word Address (WS) and word position in Source
Table (TS) designated by value of Table Index (IN). Each bit in Source Word is logically ANDed
to the corresponding bit in word within table. The result is written to the word position within the
Destination Table (TD) matching the Table Index (IN).

6. The Table Index value is incremented by one position.

7. If the Table Index is still in valid range (IN <= N-1), the Output turns ON. Otherwise, the Output
turns OFF.

CTI 2500 Series CPU Programming Reference Manual V1.33 135

The Logical AND operation is shown in the following figure:

T1 T2 TD.AND. =

.AND.

.AND.

.AND.

.AND.

1

1

1 1 1

0 0 0

0

00

0

AND Logic Table:

Input States
Function

Table
Index

Output

Reset Enable

OFF Don’t
Care

WTTA held in reset.

 0 OFF

ON OFF WTTA does not execute Holds
current
value

OFF

ON ON WTTA instruction executes.

IF (0 <= IN < N+1)
 Performs Bitwise AND operation:
 TD[IN] = WS .AND. TS[IN]
 Index increments (IN = IN +1)
 IF (0 <= IN <= N-1)

ELSE
 Index invalid. Operation aborted.

IN

IN

ON

OFF

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: WAND, TAND, WTTO, WTTX

136 CTI 2500 Series CPU Programming Reference Manual V1.33

 Word-to-Table OR (WTTO)

The WTTO instruction performs a Bitwise OR operation on corresponding bits of a word memory location
and specified word position within a table.

WTTO

OutputEnable

IN: Address for Table Index (V, W)

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

WORD-TO-TABLE OR

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

TS: Starting Addr for Source Table

N: Length of Tables (1-256 words)

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

TD: Starting Addr for Dest Table

Can be same as TS.

WS: Starting Addr for Source Word

Reset

Description of Operation

The term “Table” simply refers to a group of contiguous memory locations specified by the Table Start
Address (TS and TD) and the number (N) of words within table.

1. When Reset Input is OFF, the WTTO instruction box is reset. The value in the Table Index
Address (IN) is set to zero. The Output is turned OFF.

2. When Reset Input is ON but Enable Input is OFF, the WTTO instruction does not execute. The
Table Index holds its current value unless changed by other logic in RLL program or HMI. The
Output is turned OFF.

3. When both Reset and Enable Inputs are ON, the WTTO instruction executes.

4. The value of Table Index (IN) designates the position within the Source Table (TS) for the word
to be used in the WTTO operation. The Table Index represents an offset into the table. A value
of 0 indicates the first word position in table, and the Table Index range is from 0 to N-1 where
N specifies the number of words in table.

 If Table Index is valid (between 0 and N-1, inclusive), WTTO instruction executes.

 If Table Index is invalid, the operation aborts and Output turns OFF.

5. A Bitwise OR is performed on contents of Word Address (WS) and word position in Source
Table (TS) designated by value of Table Index (IN). Each bit in Source Word is logically ORed
to the corresponding bit in word within table. The result is written to the word position within the
Destination Table (TD) matching the Table Index (IN).

6. The Table Index value is incremented by one position.

7. If the Table Index is still in valid range (IN <= N-1), the Output turns ON. Otherwise, the Output
turns OFF.

CTI 2500 Series CPU Programming Reference Manual V1.33 137

The Logical OR operation is shown in the following figure:

A B C .OR. =

 .OR.

 .OR.

 .OR.

 .OR.

1

1

1 1 1

0 0 0

1

10

0

 OR Logic Table:

Input States
Function

Table
Index

Output

Reset Enable

OFF Don’t
Care

WTTO held in reset.

 0 OFF

ON OFF WTTO does not execute Holds
current
value

OFF

ON ON WTTO instruction executes.

IF (0 <= IN < N+1)
 Performs Bitwise OR operation:
 TD[IN] = WS .OR. TS[IN]
 Index increments (IN = IN +1)
 IF (0 <= IN <= N-1)

ELSE
 Index invalid. Operation aborted.

IN

IN

ON

OFF

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: WOR, TOR, WTTA, WTTX

138 CTI 2500 Series CPU Programming Reference Manual V1.33

 Word-to-Table Exclusive-OR (WTTX)

The WTTX instruction performs a Bitwise Exclusive OR (XOR) operation on corresponding bits of a word
memory location and specified word position within a table.

WTTX

OutputEnable

IN: Address for Table Index (V, W)

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

WORD-TO-TABLE XOR

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

TS: Starting Addr for Source Table

N: Length of Tables (1-256 words)

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

TD: Starting Addr for Dest Table

Can be same as TS.

WS: Starting Addr for Source Word

Reset

Description of Operation

The term “Table” simply refers to a group of contiguous memory locations specified by the Table Start
Address (TS and TD) and the number (N) of words within table.

1. When Reset Input is OFF, the WTTX instruction box is reset. The value in the Table Index
Address (IN) is set to zero. The Output is turned OFF.

2. When Reset Input is ON but Enable Input is OFF, the WTTX instruction does not execute. The
Table Index holds its current value unless changed by other logic in RLL program or HMI. The
Output is turned OFF.

3. When both Reset and Enable Inputs are ON, the WTTX instruction executes.

4. The value of Table Index (IN) designates the position within the Source Table (TS) for the word
to be used in the WTTX operation. The Table Index represents an offset into the table. A value
of 0 indicates the first word position in table, and the Table Index range is from 0 to N-1 where
N specifies the number of words in table.

 If Table Index is valid (between 0 and N-1, inclusive), WTTX instruction executes.

 If Table Index is invalid, the operation aborts and Output turns OFF.

5. A Bitwise Exclusive-OR is performed on contents of Word Address (WS) and word position in
Source Table (TS) designated by value of Table Index (IN). Each bit in Source Word is logically
XORed to the corresponding bit in word within table. The result is written to the word position
within the Destination Table (TD) matching the Table Index (IN).

6. The Table Index value is incremented by one position.

7. If the Table Index is still in valid range (IN <= N-1), the Output turns ON. Otherwise, the Output
turns OFF.

CTI 2500 Series CPU Programming Reference Manual V1.33 139

The Logical XOR operation is shown in the following figure:

A B C.XOR. =

.XOR.

.XOR.

.XOR.

.XOR.

1

1

1 1 0

0 0 0

1

10

0

XOR Logic Table:

Input States
Function

Table
Index

Output

Reset Enable

OFF Don’t
Care

WTTX held in reset.

 0 OFF

ON OFF WTTX does not execute Holds
current
value

OFF

ON ON WTTX instruction executes.

IF (0 <= IN < N+1)
 Performs Bitwise XOR operation:
 TD[IN] = WS .XOR. TS[IN]
 Index increments (IN = IN +1)
 IF (0 <= IN <= N-1)

ELSE
 Index invalid. Operation aborted.

IN

IN

ON

OFF

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: WXOR, TXOR, WTTA, WTTO

140 CTI 2500 Series CPU Programming Reference Manual V1.33

3.10 Word / Table Move Operations

These instructions copy data values between PLC memory areas.

 Move Word (MOVW)

The MOVW instruction copies the values of 1-256 contiguous words to a different location in PLC
memory. This instruction can also be used to insert a constant data value (such as ‘0’) into a contiguous
group of words.

MOVW

OutputInput

A: Starting Source Address

or Signed Integer Constant

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

MOVE WORD

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

B: Starting Destination Address

N: Number of Words (1-256)

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

Description of Operation

 The MOVW instruction executes each scan the Input is ON.

1. The data source is determined by the contents in (A).

 If (A) contains a Word Address, the data is read starting at the specified memory location
and continuing through the number of words specified in (N).

 Otherwise, (A) is read as a 16-bit signed integer constant.
 Range: -32768 thru +32767.

2. The data is then written, starting with the memory location specified as the Destination Address
(B) as follows:

 If (A) is a Word Address, the contents of Addresses (A) thru (A+ (N-1)) are copied to
memory Addresses (B) thru B+ (N-1)).

 If (A) is a Constant, that value to written to all memory Addresses (B) thru (B+ (N-1)).

3. The Output turns ON.

Input Function Output

OFF MOVW instruction does not execute OFF

ON

MOVW instruction executes.

 IF Data Source (A) is memory address:
 Contents of (A) thru (A+(N-1)) is copied to
 Destination Address (B) thru (B+(N-1))

 IF Data Source (A) is Constant:
 Constant value is written to each word in
 Destination Address (B) thru (B+(N-1))

ON

ON

CTI 2500 Series CPU Programming Reference Manual V1.33 141

0 0 1 0 1 1 0 0 01K43: 1 1 0 1 0 1

0 0 0 1 1 0 1 0 00K41: 00 0 0 1 0

K42: 0 1 0 0 0 0 1 0 000 0 1 0 1 0

A: K41

26

MOVE WORD

B: TCP12

N: 3

0 0 0 1 1 0 1 0 00TCP12: 0 0 0 0 1 0

MOVW Example:

0 1 0 0 0 0 1 0 00TCP13: 0 0 1 0 1 0

0 0 1 0 1 1 0 0 01TCP14: 1 1 0 1 0 1

MOVW

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: MWI, MOVE, MWIR, MIRW, MWFT, MWTT, WTOT, TTOW

142 CTI 2500 Series CPU Programming Reference Manual V1.33

 Move with Index (MWI)

The MWI instruction copies the values of 1-256 contiguous V-Memory words to a different V-Memory
area. This instruction can also be used to insert a constant data value (such as ‘0’) into a contiguous
group of V-Memory words. This differs from the MOVW instruction in that the Source Address,
Destination Address, and Data Length are set by run-time variables.

 MWI

OutputInput

A: Address holding V-Memory Index

for start of source data (V, W)

or Signed Integer Constant

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

MOVE WITH INDEX

B: Address holding V-Memory Index

for start of destination data (V,W)

N: Address containing Number

of Words to copy (V,W)

Address Range:

V1 - V32767

Range for Number

of Words: 0-256

(0 = None)

Description of Operation

 The MWI instruction executes each scan the Input is ON.

1. The data source is determined by the contents in (A).

 If (A) contains a memory address, it is treated as a pointer to the V-Memory Index used
as the starting point for data to be copied. The contents of (A) must be an integer value in
the range of 0 to +32767.

 Otherwise, (A) is read as a 16-bit signed integer constant.
 Range: -32768 thru +32767.

2. The memory address specified in (B) is a pointer to the V-Memory Index used as the starting
Destination Address.

3. The memory address specified in (N) is a pointer to the Data Length (Number of Words) This
location must hold an integer value in the range of 0 to +256. Data Length of zero results in no
words being copied.

4. If any of the following errors are detected, the MWI operation is aborted. The Output turns OFF,
and the RLL Instruction Error Bit (STW1.11) is set ON.

 V-Memory Index specified in (A) or (B) plus Data Length (N) exceeds the V-Memory size
set the PLC Memory Configuration

 Data Length specified in (N) is less than zero or greater than 256.

5. Otherwise, the operation completes as described below. The Output turns ON.

 If (A) contains a memory address, V-Memory data starting at word specified in (A) and
length as specified in (N) is copied to the V-Memory location(s) having a starting index
specified in the word addressed in (B).

 If (A) is a Constant, that value to written to all (N) word(s) starting with V-Memory location
having a starting index specified in the word addressed in (B).

CTI 2500 Series CPU Programming Reference Manual V1.33 143

0 0 0 0 0 0 0 0 10V152: 0 0 0 1 0 1

0 1 1 1 1 1 1 0 00V150: 01 1 0 1 1

V151: 0 1 0 0 0 1 1 1 001 0 1 0 1 0

A: V75

 8

MOVE WITH INDEX

B: V76

N: V88

0 1 1 1 1 1 1 0 00V160: 1 1 0 0 1 1

MWI Example:

0 1 0 0 0 1 1 1 00V161: 1 0 1 0 1 0

0 0 0 0 0 0 0 0 10V162: 0 0 0 1 0 1

MWI

where:

V75 = 150

V76 = 160

V88 = 3

Input Function Output

OFF MWI instruction does not execute OFF

ON

MWI instruction executes.

IF (Source Data (from A) references invalid V-Memory Address)
OR (Destination (from B) references invalid V-Memory Address)
OR (Data Length (N) < 0) OR (Data Length (N) > 256)
 MWI operation aborted.
 Error reported - STW1.11 turns ON

Source Data of Data Length (N) copied to Destination

OFF

ON

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: MOVW, MOVE, MWIR, MIRW, MWFT, MWTT, WTOT, TTOW

144 CTI 2500 Series CPU Programming Reference Manual V1.33

 Move Word From Table (MWFT)

The MWFT instruction copies a single word within a table to another PLC memory location. The word to
be copied is specified by a table pointer that can be controlled by the RLL program.

MWFT

OutputInput

S: Starting Address of Table (V)

REF#

REF# Table Memory Reference Number

(see Notes)

MOVE WORD FROM TABLE

N: Length of Table (1-256 words)

B: Word Address of Destination (V,W)

A: Table Pointer - Addr holding V-Mem

Index for word to be copied (V, W)

Enable

Description of Operation

 The term “Table” simply refers to a group of contiguous memory locations specified by Table Start
Address (S) and the Number (N) of words within table.

1. When Enable is OFF, the MWFT instruction box is reset. The V-Memory Index designated as
Table Start Address (S) is loaded into Table Pointer (A). This “resets” the pointer to the
beginning of the table. The Output is turned OFF.

2. When Enable is ON but Input is OFF, the MWFT instruction does not execute. The Table
Pointer (A) holds its current value. The Output is turned OFF.

3. When both Reset and Input are ON, the MWFT instruction executes as described:

 If the number of words moved since last reset is equal to the Table Length (N), the
MWFT operation aborts. All locations remain unchanged.

 The contents of the address specified by the Table Pointer (A) are copied to the
Destination Address (B).

 The Table Pointer increments by one and “points” to the next address to be copied.
When the last position in the table has been copied, the Output turns ON.

4. The MWFT instruction must be reset (Enable OFF) in order to execute again.

CTI 2500 Series CPU Programming Reference Manual V1.33 145

Input States
Function

Table Pointer Output

Enable Input

OFF Don’t
Care

MWFT held in reset.

Holds Table
Start Addr (S)

OFF

ON OFF MWFT does not execute Unchanged. OFF

ON ON MWFT instruction executes.

IF (Words copied since Reset < N)
 Table Ptr Addr (A) copied to Destination (B)
 IF (Words copied since Reset < N)
 Table Pointer Value increments.

 ELSE
 Reached end of table.

ELSE
 Operation aborted.
 Instruction must be reset to execute again.

Holds next
Addr to copy

Holds last
Addr copied

Unchanged

OFF

ON

Unchanged

Note:

The Reference Number assigned to the instruction box must be unique for all
Table Move instructions (MWFT, MWTT) entered in the PLC program.

The amount of Table Memory that is assigned in PLC Memory Configuration determines
the number of Table Move instructions allowed in the RLL program.

 One word of Table Memory is used for each Table Move instruction.

Related instructions: MOVW, MWI, MOVE, MWIR, MIRW, MWTT, WTOT, TTOW

146 CTI 2500 Series CPU Programming Reference Manual V1.33

 Move Word To Table (MWTT)

The MWTT instruction copies a single word from a PLC memory location to a position within a table. A
table pointer specifies the position within the table that will be used as the destination for the next word
copied.

MWTT

OutputInput

S: Starting Address of Table (V)

REF#

REF# Table Memory Reference Number

(see Notes)

MOVE WORD TO TABLE

N: Length of Table (1-256 words)

B: Table Pointer - Holds V-Mem Index

 of address where data is copied (V,W)

A: Word Address to be copied (V, W)

Enable

Description of Operation

 The term “Table” simply refers to a group of contiguous memory locations specified by Table Start
Address (S) and the Number (N) of words within table.

1. When Enable is OFF, the MWTT instruction box is reset. The V-Memory Index designated as
Table Start Address (S) is loaded into Table Pointer (B). This “resets” the pointer to the beginning
of the table. The Output is turned OFF.

2. When Enable is ON but Input is OFF, the MWTT instruction does not execute. The Table Pointer
(B) holds its current value. The Output is turned OFF.

3. When both Reset and Input are ON, the MWTT instruction executes as described:

 If the number of words moved since last reset is equal to the Table Length (N), the MWTT
operation aborts. All locations remain unchanged.

 The contents of the address specified by the Word Address (A) are copied to the address
specified by the Table Pointer (B).

 The Table Pointer increments by one and “points” to the Destination Address for the next
copied data. When the last position in the table has been copied, the Output turns ON.

4. The MWTT instruction must be reset (Enable OFF) in order to execute again.

CTI 2500 Series CPU Programming Reference Manual V1.33 147

Input States
Function

Table Pointer Output

Enable Input

OFF Don’t
Care

MWTT held in reset.

Holds Table
Start Addr (S)

OFF

ON OFF MWTT does not execute Unchanged. OFF

ON ON MWTT instruction executes.

IF (Words copied since Reset < N)
 Address (A) copied to Table Ptr Addr (B)
 IF (Words copied since Reset < N)
 Table Pointer Value increments.

 ELSE
 Reached end of table.

ELSE
 Operation aborted.
 Instruction must be Reset to execute again.

Holds next
Dest Address

Holds last
Dest Address

Unchanged

OFF

ON

Unchanged

Note:

The Reference Number assigned to the instruction box must be unique for all
Table Move instructions (MWFT, MWTT) entered in the PLC program.

The amount of Table Memory that is assigned in PLC Memory Configuration determine
 the number of Table Move instructions allowed in the RLL program.

 One word of Table Memory is used for each Table Move instruction.

Related instructions: MOVW, MWI, MOVE, MWIR, MIRW, MWFT, WTOT, TTOW

148 CTI 2500 Series CPU Programming Reference Manual V1.33

 Move Image Register to Word (MIRW)

The MIRW instruction copies the state of (up to 16) consecutive discrete bits into a word memory location.

 MIRW

OutputInput

IR: Starting Address of Discrete

Memory area to copy (X, Y, C, B)

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

MOVE IMAGE REGISTER TO WORD

A: Word Address of Destination

(where Discrete Bits are copied)

N: Number of Bits to Copy (1-16)

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

Description of Operation

 The MIRW instruction executes each scan the Input is ON.

 The states of 1-16 bits (specified in (N)) starting at Discrete Memory Address (IR) are copied
into the Word Address (A) beginning with the Least Significant Bit (Bit 16).

 If less than 16 bits are copied, the remaining bits in Word Address (A) are set to zero.

 The Output turns ON.

Input Function Output

OFF MIRW instruction does not execute OFF

ON

MIRW instruction executes.

State of (N) bits starting with Discrete Memory Address (IR) are
copied to Destination Word Address (A) beginning with Bit 16.

ON

CTI 2500 Series CPU Programming Reference Manual V1.33 149

IR: Y34

26

MOVE IR TO WORD

A: V55

N: 14

MIRW Example:

1

1

0

0

0

0

1

0

1

0

1

0

1

1

Y34

Y35

Y36

Y37

Y38

Y39

Y40

Y41

Y42

Y43

Y44

Y45

Y46

Y47

V55: 0 1 1 0 1 0 1 1 100 0 1 0 00

Bit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MIRW sets to zero

MIRW

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: MOVW, MWI, MOVE, MWIR, MWFT, MWTT, WTOT, TTOW

150 CTI 2500 Series CPU Programming Reference Manual V1.33

 Move Word to Image Register (MWIR)

The MWIR instruction copies the designated number of bits from the contents of a word memory address
to a contiguous group of bits in discrete memory.

 MWIR

OutputInput

IR: Starting Address of Discrete Memory

where bits are copied (Y, C, B)

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

MOVE WORD TO IMAGE REGISTER

A: Word Address of Source

(from which bits are copied)

N: Number of Bits to Copy (1-16)

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

Description of Operation

 The MWIR instruction executes each scan the Input is ON.

 The states of 1-16 bits (N) starting at Least Significant Bit (Bit 16) of Source Word Address (A)
are copied to Discrete Memory, beginning at Address (IR).

 The Output turns ON.

Input Function Output

OFF MWIR instruction does not execute OFF

ON

MWIR instruction executes.

(N) bits of the contents of Word Address (A), starting with LSB
(Bit 16), are copied to Discrete Memory, beginning at Address (IR).

ON

CTI 2500 Series CPU Programming Reference Manual V1.33 151

IR: C61

38

MOVE WORD TO IR

A: TCP14

N: 12

MWIR Example:

1

0

1

0

1

0

0

0

1

0

1

0

C61

C62

C63

C64

C65

C66

C67

C68

C69

C70

C71

C72

TCP14: 0 0 0 0 1 0 1 1 000 0 1 0 10

Bit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MWIR

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: MOVW, MWI, MOVE, MIRW, MWFT, MWTT, WTOT, TTOW

152 CTI 2500 Series CPU Programming Reference Manual V1.33

 Move Image Register From Table (MIRFT)

The MIRFT instruction copies the contents of (up to 256) consecutive words within a table into discrete
memory.

 MIRFT

OutputInput

IR: Starting Address of Discrete Memory

where bits are copied (Y, C, B)

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

MOVE IR FROM TABLE

TS: Starting Address of Source Table

N: Length of Table (1-256 words)

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

Description of Operation

 The term “Table” simply refers to a group of contiguous memory locations specified by Table Start
Address (TS) and the Number (N) of words within table.

The MIRFT instruction executes each scan the Input is ON.

 The contents of the table (1-256 consecutive words as specified in (N)) are copied, starting with
word designated as Table Start Address (TS). The data in each word is copied starting with the
Least Significant Bit (Bit 16).

 The data is copied into discrete memory beginning with Bit Address (IR). The starting bit
location must be on a one-relative 8-point boundary (1, 9, 17, 25, etc) and must be addressed
so that all bits are within the valid range for the CPU model being used.

 The contents of the entire table are copied each scan.

 The Output turns ON.

Input Function Output

OFF MIRFT instruction does not execute OFF

ON

MIRFT instruction executes.

Contents of the entire Table (1-256 words specified by (N))
starting with Word Address (TS) are copied to Discrete Memory
beginning with Bit Address (IR). Data is copied into each word
in the order from LSB (Bit 16) to MSB (Bit 1).

ON

CTI 2500 Series CPU Programming Reference Manual V1.33 153

NOTE: All word data is copied LSB first

MIRFT Example:

TS: V90

 5

MOVE IR FROM TABLE

IR: C57

N: 3

MIRFT

C

65

C

66

C

67

C

68

C

69

C

70

C

71

C

72

C

57

C

58

C

59

C

60

C

61

C

62

C

63

C

64

0 1 1 0 1 1 0 1 1011 0 0 0 1

C

97

C

98

C

99

C

100

C

101

C

102

C

103

C

104

C

89

C

90

C

91

C

92

C

93

C

94

C

95

C

96

0 1 0 1 0 0 1 0 1000 0 0 1 1

C

81

C

82

C

83

C

84

C

85

C

86

C

87

C

88

C

73

C

74

C

75

C

76

C

77

C

78

C

79

C

80

1 0 0 0 0 0 0 1 0110 1 1 1 0

1 0 1 1 1 0 1 1 0011 0 0 0 1

0 0 0 0 1 0 0 0 1101 1 1 1 0

1 1 1 0 0 1 1 0 0000 0 1 0 0

V90

V91

V92

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: MOVW, MWI, MOVE, MIRW, MWIR, MWTT, WTOT, TTOW

154 CTI 2500 Series CPU Programming Reference Manual V1.33

 Move Image Register To Table (MIRTT)

The MIRTT instruction copies values from consecutive discrete memory locations into the contents of (up
to 256) consecutive words.

 MIRTT

OutputInput

IR: Starting Address of Discrete Memory

of bits to be copied (X, Y, C, B)

REF#

REF# Instruction Reference Number

(0-32767) - see Notes

MOVE IR TO TABLE

TD: Starting Address of Destination

Table where data is written

N: Length of Table (1-256 Words)

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

Description of Operation

 The term “Table” simply refers to a group of contiguous memory locations specified by Table Start
Address (TD) and the Number (N) of words within table.

The MIRTT instruction executes each scan the Input is ON.

 The Number of Bits to copy is calculated as (16 * N) where (N) specifies the length of the table
from 1-256 words. Therefore, the Number of Bits to copy is in the range of 16 to 4096.

 The state (ON/OFF) of the designated Discrete Memory locations are copied, starting with Bit
Address (IR) The starting bit location must be on a one-relative 8-point boundary (1, 9, 17, 25,
etc) and must be addressed so that all bits are within the valid range for the CPU model being
used.

 The data is copied into the table, starting with word designated as Table Start Address (TD).
The data is copied into each word starting with the Least Significant Bit (Bit 16).

 All bits are copied into the table each scan.

 The Output turns ON.

Input Function Output

OFF MIRTT instruction does not execute OFF

ON

MIRTT instruction executes.

Number of Bits = (N*16) where N is Number of Words (1-256)

ON/OFF state of all Discrete Memory bits starting with Bit
Address (IR) are copied to Destination Table beginning with
Word Address (TD). Data is copied into each word in the order
from LSB (Bit 16) to MSB (Bit 1).

ON

CTI 2500 Series CPU Programming Reference Manual V1.33 155

NOTE: All bits are copied into words from LSB to MSB

V200

V201

Y

73

Y

74

Y

75

Y

76

Y

77

Y

78

Y

79

Y

80

Y

65

Y

66

Y

67

Y

68

Y

69

Y

70

Y

71

Y

72

1 1 0 0 1 0 1 0 0011 0 0 1 0

Y

89

Y

90

Y

91

Y

92

Y

93

Y

94

Y

95

Y

96

Y

81

Y

82

Y

83

Y

84

Y

85

Y

86

Y

87

Y

88

0 1 1 1 0 1 0 0 1000 1 0 1 1

MIRTT Example:

TD: V200

 8
MOVE IR TO TABLE

IR: Y65

N: 2

MIRTT

0 1 0 0 1 0 1 1 1010 0 1 0 0

1 0 1 1 0 1 1 0 0100 0 1 0 1

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: MOVW, MWI, MOVE, MIRW, MWIR, MWFT, WTOT, TTOW

156 CTI 2500 Series CPU Programming Reference Manual V1.33

 Move Element (MOVE)

The MOVE instruction is the universal “Data Copy” instruction. This instruction copies the contents of 1-
32767 elements of the specified data type (Byte, Word, or 32-bit Long Word). The source and destination
memory locations may be predefined or set by indirect addresses (pointers) that may be modified during
run-time.

MOVE

OutputInput

TD: Destination Address (for Results) -

Address or Address Pointer

REF#

N: Number of Elements - Address

or Constant (1-32767)

TS: Data Source - Address, Addr Pointer,

or Signed Constant (based on TYPE)

REF# Instruction Reference Number

(0-32767) - see Notes

TYPE: Data Type (Byte, Word, Long Word)

SI: Source Index - Blank (unused),

Address, or Constant (0-65535)

DI: Destination Index - Blank (unused),

Address, or Constant (0-65535)

See description of

parameter fields below

MOVE ELEMENT TYPE

Parameter Fields

Name Description Valid Address Values

TYPE
Data Type – Length of Data Element
Byte (8 bits), Word (16 bits), or Long Word (32 bits)

TS

Source of the Data Element to be copied. Can be entered as:
(1) Signed constant (range based on Data Type)
(2) Word Address
(3) Indirect Address (Address Pointer) – Holds address of
 another memory location

Any Word Address:
WX/WY, V, K, STW, TCC,
TCP, DSC, DSP, DCC, W

SI

Optional Source Index – Selects an offset (based on Data
Type) from the address specified in TS. Can be entered as:
(1) Blank (field not used)
(2) Unsigned integer constant (0-65535)
(3) Word Address

Any Word Address:
WX/WY, V, K, STW, TCC,
TCP, DSC, DSP, DCC, W

TD

Destination Address where data is written.
(1) Word Address
(2) Indirect Address (Address Pointer)

For Direct Address:
Any Writeable Address

For Indirect Address:
Any Word Address

DI

Optional Destination Index – Selects an offset (based on Data
Type) from the address specified in TD. Can be entered as:
(1) Blank (field not used)
(2) Unsigned integer constant (0-65535)
(3) Word Address

Any Writeable Address:
WY, V, TCC, TCP, DSC,
DSP, DCC, W

N

Number of Elements to be copied. Can be entered as:
(1) Constant (1-32767)
(2) Word Address

Any Word Address:
WX/WY, V, K, STW, TCC,
TCP, DSC, DSP, DCC, W

CTI 2500 Series CPU Programming Reference Manual V1.33 157

Entering Source Information

1. The (TS) field specifies the source of the Data Element to be copied by entering:

 Signed Constant (range based on Data Type selected - Specified value is copied to each
element in the Destination Table.

a) Byte – Range: -128 to +127
b) Word – Range: -32768 to +32767
c) Long Word – Range: -2147483648 to +2147483647

 Word Address (any valid memory address) – Specifies the starting address in memory for
data to be copied. The number of source elements (N) are read starting at this location and
copied to the destination.

 Indirect Address (Address Pointer) – Specified address holds the value of another memory
location that is used as the starting address for data to be copied. An Address Pointer is a
32-bit value and is designated by inserting a “@” character as a prefix to the address, i.e.,
@V125 or @K20. The number of source elements (N) are read starting at this location and
copied to the destination.

 The LDA instruction can be used to load an address into a memory location.

2. The (SI) field designates an index (or relative offset) from the Start Address (TS) specified. When
used, the actual starting location is Start Address (TS) plus Index (SI). The Source Index can be
used with either Direct or Indirect Addresses through one of the following values:

 Blank – No indexing performed and no entry is required

 Constant Index – Range: 0 to 65535 (value of 0 results in no index)

 Variable Index – Value of the Word Address entered is interpreted as an Unsigned Integer
(0 to 65535) and used as relative offset from (TS).

Entering Destination Information

1. The (TD) field specifies the Destination Address for the Data Elements by entering:

 Word Address (any writeable memory address) – Specifies the starting address in memory
for the destination of the copied data. The number of elements (N) are written starting at
this location.

 Indirect Address (Address Pointer) – Specified address holds the value of another memory
location that is used as the starting address for data to be written. An Address Pointer is a
32-bit value and is designated by inserting a “@” character as a prefix to the address, i.e.,
@V125 or @K20. The number of specified elements (N) are written starting at this location.

2. The (DI) field designates an index (or relative offset) from the Destination Address (TD) specified.
When used, the actual starting location is Destination Address (TD) plus Index (DI). The
Destination Index can be used with either Direct or Indirect Addresses through one of the
following values:

 Blank – No indexing performed and no entry is required

 Constant Index – Range: 0 to 65535 (value of 0 results in no index)

 Variable Index – Value of the Word Address entered is interpreted as an Unsigned Integer
(0 to 65535) and used as relative offset from (TD).

If Source or Destination Address is specified as an Indirect Address with Index, the actual address is
determined by first calculating the Indirect Address location and then indexing from that point.

158 CTI 2500 Series CPU Programming Reference Manual V1.33

Description of Operation

 The MOVE instruction executes each scan the Input is ON.

1. The type of data element is designated by entry in TYPE field:
 Byte (8 bits), Word (16 bits) or Long Word (32 bits).

2. The data elements to be copied are determined by Source Address (TS), Source Index (SI),
and Number of Elements (N).

3. The memory location for writing data is determined by Destination Address (TS) and
Destination Index (DI).

4. If any referenced address is undefined or Number of Elements (N) is invalid, the MOVE
operation is aborted. The Output turns OFF and contents of all locations remain unchanged.
The following errors are reported:

 User Program Error (STW1.6) is set ON

 RLL Instruction Error (STW1.11) is set ON

 If this is the first RLL instruction error detected in the current PLC scan, the Table
Overflow Error (value = 5) is written to STW200

5. Otherwise, all source elements are copied to the specified destination.
 The Output turns ON.

If Input is OFF, the MOVE instruction does not execute and Output turns OFF.

MOVE Operation Examples

MOVE Example 1:

Copy constant Word (16-bit) value

of 2500 into destination table

beginning at address TCP51. The

values are written into 2 words

starting at Word index 4 (TCP55).

TS: 2500

 11

MOVE ELEMENT

SI:

N: 2

MOVE

WORD

DI: 4

TD: TCP51

TD[0]: TCP51

TD[1]: TCP52

TD[2]: TCP53

0 0 1 0 1 0 0 0 0100 0 1 1 0

0 0 1 0 1 0 0 0 0100 0 1 1 0

TD[3]: TCP54

TD[4]: TCP55

TD[5]: TCP56

TS : 2500

CTI 2500 Series CPU Programming Reference Manual V1.33 159

TS[0]: K16

TS[1]: K17

0 1 0 0 0 0 0 0 1000 0 1 0 1 TS[2]: K18

0 0 0 0 0 1 0 1 0010 1 0 0 0

0 1 0 0 0 1 0 1 1010 1 1 0 1

TS[3]: K19

TS[4]: K20

Source Table (TS)

MOVE Example 2:

Copy 3 Word values starting at

Word Index 2 in Source Table that

begins at K16 into Destination

Table that begins at address V76.

The values are written into 3 words

starting at Word Index 1 (V77).

TS: K16

 12

MOVE ELEMENT

SI: 2

N: 3

MOVE

WORD

DI: 1

TD: V76

TD[0]: V76

0 1 0 0 0 0 0 0 1000 0 1 0 1 TD[1]: V77

0 0 0 0 0 1 0 1 0010 1 0 0 0

0 1 0 0 0 1 0 1 1010 1 1 0 1

TD[2]: V78

TD[3]: V79

Destination Table (TD)

MOVE Example 3:

Copy 2 Byte values starting at

Byte Index 3 in Source Table that

begins at V21 into Destination

Table that begins at address V31.

The values are written into 2 bytes

starting at Byte Index 2.

TS: V21

 13

MOVE ELEMENT

SI: 3

N: 2

MOVE

BYTE

DI: 2

TD: V31

TS[0], TS[1]: V21

0 1 0 0 0 0 0 0 1000 0 1 0 1 TS[2], TS[3]: K18

0 0 0 0 0 1 0 1 0010 1 0 0 0 TS[4], TS[5]: K19

Source Table (TS)

Byte Index 1

Byte Index 2 Byte Index 3

Byte Index 4 Byte Index 5

Byte Index 0

TS[0], TS[1]: V31

0 1 0 0 0 0 0 0 1000 0 1 0 1 TS[2], TS[3]: V32

0 0 0 0 0 1 0 1 0010 1 0 0 0 TS[4], TS[5]: V33

Destination Table (TD)

Byte Index 1

Byte Index 2 Byte Index 3

Byte Index 4 Byte Index 5

Byte Index 0

160 CTI 2500 Series CPU Programming Reference Manual V1.33

MOVE Example 4:

Data Type = Long Word (32 bits)

Source Table is an Indirect

Address (@K40) with Variable

Index set by value of V91.

In this example, the Long Word

starting at K40 contains the

Logical Address V250.

The actual contents of K40-K41:

K40 = 0100 Hex

K41 = 00F9 Hex

Variable Source Index is set by

the value of V91 (V91 = 2)

Therefore, Source Data starts at

Long Word Index 2 from Source

Table that begins at V250.

The value of K44 specifies the

Number of Elements to copy.

K44 = 4 meaning 4 Long Words

are copied.

Destination Table is an Indirect

Address (@K42) with Variable

Index set by value of V92.

The Long Word starting at K42

contains the Logical Address

WY33.

The actual contents of K42-K43:

K42 = 0A00 Hex

K43 = 0020 Hex

Variable Destination Index Is set

by the value of V92 (V92 = 1)

The copied data is written to

Destination Table that begins at

WY33 at Long Word Index 1.

TS: @K40

 14

MOVE ELEMENT

SI: V91

N: K44

MOVE

LONG

DI: V92

TD: @K42

Destination Table (TD)

TD[0]: WY33

WY340 1 0 0 0 0 0 0 1000 0 1 0 1

0 0 0 0 0 1 0 1 0010 1 0 0 0

Long Word Index 0

Long Word Index 1

Long Word Index 2

Long Word Index 3

Long Word Index 4

TD[1]: WY35

WY36

TD[2]: WY37

WY38

TD[3]: WY39

WY40

TD[4]: WY41

WY42

Source Table (TS)

TS[0]: V250

V2510 1 0 0 0 0 0 0 1000 0 1 0 1

0 0 0 0 0 1 0 1 0010 1 0 0 0

Long Word Index 0

Long Word Index 1

Long Word Index 2

Long Word Index 3

Long Word Index 4

TS[1]: V252

V253

TS[2]: V254

V255

TS[3]: V256

V257

TS[4]: V258

V259

Long Word Index 5
TS[5]: V260

V261

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: MOVW, MWI, MWIR, MIRW, MWTT, MWFT, TTOW, WTOT

CTI 2500 Series CPU Programming Reference Manual V1.33 161

 Table To Word (TTOW)

The TTOW instruction copies a single word within a table to another PLC memory location. The word to
be copied is specified by a table pointer that can be controlled by the RLL program. The TTOW function is
very similar to MWFT, but this instruction supports additional memory types for data source and
destination.

TTOW

OutputInput

TS: Starting Address of Source Table

REF#

TABLE TO WORD

N: Length of Table (1-256 words)

WD: Word Address of Destination

IN: Table Index Ptr - Memory location that

is used as Table Index (V, W)
Enable

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

REF# Instruction Reference Number

(0-32767) - see Notes

Description of Operation

 The term “Table” simply refers to a group of contiguous memory locations specified by Table Start
Address (TS) and the Number (N) of words within table.

1. When Reset Input is OFF, the TTOW instruction box is reset. A value of zero is loaded into the
address specified as Table Index (IN). This “resets” the index to the beginning of the table. The
Output is turned OFF.

2. When Reset Input is ON but Enable is OFF, the TTOW instruction does not execute. The Table
Index (IN) address holds its current value unless modified by RLL instructions or HMI. The Output
is turned OFF.

3. When both Reset and Enable Inputs are ON, the TTOW instruction executes as described:

 If the value in the Table Index address (IN) does not correspond to a valid position offset
within the table, the TTOW operation aborts and no copy is performed. The Table Index must
be in the range of zero to (N-1) to be valid. A value of zero corresponds to the first word in
table (TS) and (N-1) designates the last word in the table.

 The contents of the word within the source table specified by Table Start Address (TS) and
Index are copied to the Destination Address (WD). One word is copied each scan. The Table
Index value increments by one and “points” to the next address to be copied. The Output
turns ON each scan that a word is copied until the TTOW operation has completed.

 If Table Index equals Table Length (indicating the last position in the table has been copied),
the Output turns OFF

4. The TTOW instruction must be reset (Reset OFF) in order to execute again.

162 CTI 2500 Series CPU Programming Reference Manual V1.33

Input States
Function

Table Index Output

Reset Enable

OFF Don’t
Care

TTOW held in reset.

Set = 0 OFF

ON OFF TTOW does not execute.

Unchanged OFF

ON ON TTOW instruction executes each scan.

Table Index (IN) is a zero-relative number
indicating next word position to be copied.
Table Index range: 0 – (N-1)

Table Word is word within table to be copied.
Table Word = Table Start (TS) + Table Index

IF (0 <= Table Index < N)
 Table Word (TS) copied to Word Addr (WD)

ELSE IF (Table Index = N)
 Reached end of table.

ELSE
 Operation aborted.

Instruction must be Reset to execute again.

Increments
by one

N

Unchanged

ON

OFF

Unchanged

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: MOVW, MWI, MOVE, MWIR, MIRW, MWTT, MWFT, WTOT

CTI 2500 Series CPU Programming Reference Manual V1.33 163

 Word To Table (WTOT)

The WTOT instruction copies a single word from a PLC memory location to a position within a table. A
table pointer specifies the position within the table that will be used as the destination for the next word
copied. The WTOT function is very similar to MTTW, but this instruction supports additional memory types
for data source and destination.

WTOT

OutputInput

TD: Starting Address of Destination Table

REF#

WORD TO TABLE

N: Length of Table (1-256 words)

WS: Word Address of Data Source

IN: Table Index Ptr - Memory location that

is used as Table Index (V, W)
Enable

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

REF# Instruction Reference Number

(0-32767) - see Notes

Description of Operation

 The term “Table” simply refers to a group of contiguous memory locations specified by Table Start
Address (TD) and the Number (N) of words within table.

1. When Reset Input is OFF, the WTOT instruction box is reset. A value of zero is loaded into the
address specified as Table Index Pointer (IN). This “resets” the index to the beginning of the
table. The Output is turned OFF.

2. When Reset Input is ON but Enable is OFF, the WTOT instruction does not execute. The Table
Index (IN) address holds its current value unless modified by RLL instructions or HMI. The Output
is turned OFF.

3. When both Reset and Enable Inputs are ON, the WTOT instruction executes as described:

 If the value in the Table Pointer Address (IN) does not correspond to a valid position index
within the table, the WTOT operation aborts and no copy is performed. The Index value must
be in the range of zero to (N-1) to be valid. A value of zero corresponds to the first word in
table (TS) and (N-1) points to the last word in the table.

 The contents of the Word Source Address (WS) are copied to the word position within the
table specified by Table Start Address (TD) and Index. One word is copied each scan. The
Table Index value increments by one and “points” to the next address to be copied. The
Output turns ON each scan that a word is copied until the WTOT operation has completed.

 If Table Pointer value equals Table Length (indicating the last position in the table has been
copied), the Output turns OFF.

4. The WTOT instruction must be reset (Reset OFF) in order to execute again.

164 CTI 2500 Series CPU Programming Reference Manual V1.33

Input States
Function Table Index Output

Reset Enable

OFF Don’t
Care

WTOT held in reset.

Set = 0 OFF

ON OFF WTOT does not execute Unchanged. OFF

ON ON WTOT instruction executes.

Table Index = Value at Table Pointer Addr (IN)
Table Word = Table Start (TD) + Table Index

IF (0 <= Table Index < N)
 Source Word (WS) copied to Table Word
 Table Index increments
 IF (Table Index < Table Length (N))

ELSE IF (Table Index = N)
 Reached end of table.

ELSE
 Operation aborted.

Instruction must be Reset to execute again.

Increments
by one

N

Unchanged

ON

OFF

Unchanged

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: MOVW, MWI, MOVE, MWIR, MIRW, MWTT, MWFT, TTOW

CTI 2500 Series CPU Programming Reference Manual V1.33 165

3.11 Program Control Operations

These instructions affect the control flow or execution sequence of the PLC program scan.

 Unconditional END (END)

The END instruction terminates the RLL scan.

END

Description of Operation

1. The END instruction has two functions:

 Terminates execution of RLL scan

 Separator between main RLL and RLL subroutine instructions

2. The END instruction must be only element in the network.

3. When the END instruction is executed, the controller terminates the RLL scan. Any instructions
placed after the END instruction that are NOT part of an RLL subroutine will not execute.

4. If RLL subroutines are included in the PLC program, the END instruction must be inserted
between the last network in the main RLL program and the first subroutine network.

Related instructions: ENDC

166 CTI 2500 Series CPU Programming Reference Manual V1.33

 Conditional END (ENDC)

The ENDC instruction terminates the RLL program scan when the input conditions are TRUE.

ENDC

INPUT

Description of Operation

The ENDC instruction functions as a RLL network output and executes each scan the instruction
receives power flow (Input is ON). The following occurs when ENDC executes:

 The current RLL program scan is terminated.

 All RLL instructions following the ENDC instructions are not executed and Outputs following
the ENDC are frozen. The ENDC can be used to reduce the PLC scan time by eliminating
execution of unnecessary sections of logic.

 If the ENDC instruction is placed in the Zone of Control for MCR and/or JMP instructions, it
functions as an End statement for those zones. All Outputs in front of the ENDC instruction
remain under the control of the MCR and/or JMP.

 If the ENDC instruction is placed in a SKP-to-LBL Zone of Control, the ENDC is not
executed when the SKP instruction is active.

When the ENDC instruction does not receive power flow, it has no effect on the program.

Input Function

OFF ENDC instruction does not execute

ON

ENDC instruction executes.

RLL Program scan terminates.
Active MCR and JMP Zones of Control are ended.

Related instructions: END

CTI 2500 Series CPU Programming Reference Manual V1.33 167

 Jump (JMP) / Jump End (JMPE)

The JMP and JMPE instructions are used to create “Output-Freeze” sections within the RLL program.
These instructions allow output points to be duplicated with the RLL program and updated only when
specific input conditions are present.

REF#

REF#

JMP

INPUT

JMPE

JMP Zone of Control

Control of Outputs is disabled when

INPUT to JMP is FALSE

REF# Instruction Reference Number (1-8)

Numbers can be repeated

Description of Operation

The JMP/JMPE instructions having the same Reference Numbers are used to create a section of the
RLL program (known as the “JMP Zone of Control”) where the update of the discrete output points can
be enabled or disabled.

1. When the JMP instruction has power flow (Input is ON):

 All RLL networks with the JMP Zone of Control execute normally.

 The status of all output points within the JMP Zone of Control are updated each scan.

2. When the JMP instruction does not have power flow (Input is OFF):

 All RLL network instructions are executed normally except for discrete outputs.

 All discrete output points within the JMP Zone of Control, including discrete image register
(Y), control relays (C), and bit-of-word outputs (i.e., WY2.1 or V10.12), are not updated and
hold previous state.

 The status of discrete outputs (Y) and control relays (C) set within an RLL instruction such
as DRUM, MWIR, CMP, and DCAT, are not updated and hold previous state.

 Set (SET) and Reset (RST) Coil instructions do not execute and hold previous state.

3. It is permitted to make the JMPE instruction conditional by inserting one or more input
conditions on the RLL network. The JMPE instruction must have power flow to be detected. If
a JMPE with matching REF# is not found, the remainder of the main RLL program is
considered part of that JMP Zone of Control.

4. The JMP instruction is overridden if “nested” within a MCR Zone of Control. When the MCR
instruction loses power flow, the discrete outputs within the JMP/JMPE zone are turned OFF
regardless of the input state to the JMP instruction

168 CTI 2500 Series CPU Programming Reference Manual V1.33

Input Function

OFF JMP instruction loses power flow.

RLL instructions in JMP Zone of Control continue to
execute normally except for discrete output points.
All discrete outputs in JMP Zone of Control are not
updated and held in last state.

ON

JMP instruction has power flow.

RLL networks in JMP Zone of Control execute and
discrete output points are updated normally.

JMP

C100 6

X12 X27 Y35

X14 V20.8

C105 DCAT

TC: 20

DELAY: 1000

OF: X15

CF: X16

OA: Y29

CA: Y30

C125

JMPE

6

JMP / JMPE Example:

When JMP-6 instruction input is FALSE, outputs Y35, V20.8

Y29, Y30, and C125 are not updated and frozen in last state.

However, RLL instructions DCAT and MOVW continue to

execute.

C125C105 MOVW

A: V100

B: V200

N: 3

10

Related instructions: MCR/MCRE, SKP/LBL

CTI 2500 Series CPU Programming Reference Manual V1.33 169

 Skip (SKP) / Label (LBL)

The SKP and LBL instructions create segments in PLC program where all RLL instructions can be
executed or skipped based on input conditions. These instructions allow output points to be duplicated
and controlled by different logic sections within an RLL program.

REF#

REF#

SKP

INPUT

LBL

SKP-to-LBL Zone of Control

RLL networks bypassed when INPUT is TRUE

REF# Instruction Reference Number (1-255)

Both SKP/LBL must have same REF#.

Numbers must be unique within a given

TASK segment and RLL subroutine.

Description of Operation

The SKP/LBL instructions are used to create a program section where the execution of RLL networks
can be enabled or disabled.

1. When the SKP instruction has power flow (Input is ON)

 All RLL networks between the SKP and its associated LBL are not executed and
bypassed during PLC scan.

 All output points within the SKP-to-LBL Zone of Control are not updated and hold
previous state.

 RLL instructions using timers do not execute. Use extreme care to ensure correct
operation of Timers (TMR, TMRF, DCAT, MCAT) and Drums (DRUM, EDRUM, MDRMD,
MDRMW) when these instructions are placed within the SKP-to-LBL Zone of Control.

2. When the SKP instruction does not have power flow (Input is OFF):

 All RLL networks within the SKP-to-LBL Zone of Control execute normally.

 The status of all output points within the JMP Zone of Control are updated each scan.

170 CTI 2500 Series CPU Programming Reference Manual V1.33

Input Function

OFF SKP instruction loses power flow.

RLL networks in SKP-to-LBL Zone of Control execute
and output points are updated normally.

ON

SKP instruction has power flow.

RLL instructions in SKP-to-LBL Zone of Control are
bypassed and do not execute.
Outputs are not updated and held in last state.

Usage Guidelines

The following rules apply when using SKP and LBL instructions:

 The SKP-to-LBL Zone of Control is limited to a single TASK segment and/or RLL subroutine.
Both SKP and LBL instructions with the same REF# must be present within the same
program segment, and the LBL must be located after its matching SKP instruction. The LBL
must be inserted before the instruction that terminates that program segment (TASK, END,
ENDC, or RTN).

 A SKP instruction entered without a matching LBL generates a compile error and prevents
the controller from entering RUN mode. A LBL instruction entered without a matching SKP is
ignored.

 SKP/LBL Reference Numbers can range from 1-255 and must be unique within each
program TASK segment and/or RLL subroutine. Therefore, up to 255 different SKP-to-LBL
zones are allowed in each program segment.

 The SKP function overrides the MCR or JMP when the SKP-to-LBL Zone of Control is
“nested” within the Zone of Control for MCR or JMP instructions. When SKP has power flow,
all RLL networks between SKP and LBL are bypassed and not execute.

WARNING:

Take care when attempting to insert and/or edit SKP and LBL instructions using the Online Edit
function. If a SKP instruction is entered without its corresponding LBL and the PLC is

commanded to RUN mode, the controller will transfer to PROGRAM mode and freeze outputs in
their current state, resulting in unexpected operation. This could result in damage to equipment

and/or serious injury to personnel.

In order to prevent this action, we recommend always inserting the instructions in this order: LBL
first, then corresponding SKP.

CTI 2500 Series CPU Programming Reference Manual V1.33 171

C35

SKP

X47 2

X23 Y73

C34 TMR

TC: 29

PRESET: 75

STATUS: UNPROT

C45

LBL

2

SKP / LBL Example:

When SKP-2 instruction input is TRUE, RLL networks 2 thru 4

are bypassed and not executed. Outputs Y73, C45, and C46

are frozen in last state.

C46C45 LDC

A: V325

N: -16250

26

1

2

3

4

5

Related instructions: JMP/JMPE, MCR/MCRE

172 CTI 2500 Series CPU Programming Reference Manual V1.33

 Master Control Relay (MCR) / MCR End (MCRE)

The MCR is an “Output-Clear” instruction, used in conjunction with MCRE to create sections in PLC
program where all output points are turned OFF based on input conditions to MCR.

REF#

REF#

MCR

INPUT

MCRE

MCR Zone of Control

Outputs are turned OFF when INPUT

to MCR is FALSE

REF# Instruction Reference Number (1-8)

Numbers can be repeated

Description of Operation

The MCR/MCRE instructions having the same Reference Numbers are used to create a section of the
RLL program (known as the “MCR Zone of Control”) where the discrete output points can be controlled
by ladder logic or turned OFF (set to zero).

1. When the MCR instruction has power flow (Input is ON):

 All RLL networks with the JMP Zone of Control execute normally.

 The status of all output points within the MCR Zone of Control are controlled by RLL
program and updated each scan.

2. When the MCR instruction does not have power flow (Input is OFF):

 All RLL network instructions are executed normally except for discrete outputs.

 All discrete output points within the MCR Zone of Control, including discrete image register
(Y), control relays (C), and bit-of-word outputs (i.e., WY2.1 or V10.12), referenced by
Normal Coils, NOT Coils, or Immediate Coils are turned OFF.

 The status of discrete outputs (Y) and control relays (C) set within an RLL instruction such
as DRUM, MWIR, CMP, and DCAT, are turned OFF.

 Set (SET) and Reset (RST) Coil instructions do not execute and the referenced discrete
points are held at their previous state.

3. It is permitted to make the MCRE instruction conditional by inserting one or more input
conditions on the RLL network. The MCRE instruction must have power flow to be detected. If
a MCRE with matching REF# is not found, the remainder of the main RLL program is
considered part of that MCR Zone of Control.

4. If a MCR/MCRE zone is “nested” within another MCR Zone of Control, all discrete outputs
within the inner zone are turned OFF when the outer MCR instruction loses power flow.

CTI 2500 Series CPU Programming Reference Manual V1.33 173

Input Function

OFF MCR instruction loses power flow.

RLL instructions in MCR Zone of Control continue to
execute normally except for discrete output points.

All discrete outputs in MCR Zone of Control referenced
to Normal Coils, NOT Coils, and Immediate Coils are
turned OFF.

SET and RESET Coils are not executed and referenced
points are held in previous state.

ON

MCR instruction has power flow.

RLL networks in MCR Zone of Control execute and the
status of discrete output points is controlled by RLL
program.

WARNING:

The MCR instruction should not be used to replace a hardwired external Master Control Relay
used for Emergency Stop operation.

Controllers can fail so that output states cannot be guaranteed, resulting in unexpected operation.
This could result in damage to equipment and/or serious injury to personnel.

174 CTI 2500 Series CPU Programming Reference Manual V1.33

X10

1

2

3

4

MCR

X4 1

X4 Y73

C12 CMP

A: V10

B: V12

GT: C23

LT: C24

C25

MCR / MCRE Example:

When MCR-1 instruction input is FALSE,

Outputs Y73, C23, C24, and C25 are turned OFF.

Y17 (controlled by SET Coil) is held in last state.

MCRE

1

Y17

SET

5

26

Related instructions: JMP/JMPE, SKP/LBL

CTI 2500 Series CPU Programming Reference Manual V1.33 175

 Go To Subroutine (GTS)

The GTS instruction is used to call a segment of the RLL program designated as a subroutine. The
Reference Number (1-255) specifies the subroutine to be executed.

REF# Subroutine Reference Number (1-255)

REF#

GTS

INPUT

Description of Operation

The GTS instruction functions as a RLL network output and executes each scan the instruction has
power flow (Input is ON) The following occurs when GTS executes:

 Program execution immediately jumps the section of PLC program designated RLL
Subroutine with Reference Number matching GTS REF# (1-255) .

 When RLL Subroutine is completed, program execution continues with the network
immediately following the GTS instruction.

 There is no limit to the number of times a RLL Subroutine can be called during a single
PLC scan.

When the GTS instruction does not receive power flow, it does not execute.

Input Function

OFF GTS instruction does not execute

ON

GTS instruction executes.

Calls RLL Subroutine defined by REF# (1-255)
Execution of PLC Program resumes at this point when
RLL Subroutine completed.

See SBR instruction for details on creating an RLL Subroutine.

176 CTI 2500 Series CPU Programming Reference Manual V1.33

WARNING:

The referenced RLL Subroutine must exist and be properly delimited before the calling instruction
(GTS, PGTS, or PGTSZ) can be executed.

Take care when attempting to insert and/or edit RLL Subroutines using the Online Edit function. If
an instruction that calls a subroutine is entered without the associated RLL Subroutine properly
defined and the PLC is commanded to RUN mode, the controller will transfer to PROGRAM mode
and freeze outputs in their current state, resulting in unexpected operation. This could result in

damage to equipment and/or serious injury to personnel.

In order to prevent this action, we recommend always defining the RLL Subroutine section first,
and then enter the instruction(s) to call that subroutine.

GTS

SBR

 5

X1 5

GTS Example:

RTN

X3 Y9

C22C1 ADD

A: V35

B: V45

C: V50

END End of

main RLL

Start of RLL

Subroutine

End of RLL

Subroutine

Calls RLL

Subroutine

Related instructions: END, PGTS, PGTSZ, SBR, RTN

CTI 2500 Series CPU Programming Reference Manual V1.33 177

 Parameterized Go To Subroutine (PGTS)

The PGTS instruction is similar to GTS in that it is used to call a segment of the RLL program designated
as a subroutine. However, it is more flexible because it allows up to 20 parameter values to be passed to
the subroutine. This allows a general subroutine to be called from multiple PGTS instructions where
parameter identifiers are used in place of specific memory addresses.

.

 PGTS REF#

PARAM GO TO SUBROUTINE
Input

REF# Subroutine Reference Number (1-32)

IN1 / IO1: Param #1 (Word or Bit Addr)

IN2 / IO2: Param #2 (Word or Bit Addr)

IN3 / IO3: Param #3 (Word or Bit Addr)

IN4 / IO4: Param #4 (Word or Bit Addr)

IN5 / IO5: Param #5 (Word or Bit Addr)

IN6 / IO6: Param #6 (Word or Bit Addr)

IN7 / IO7: Param #7 (Word or Bit Addr)

IN8 / IO8: Param #8 (Word or Bit Addr)

IN9 / IO9: Param #9 (Word or Bit Addr)

IN10 / IO10: Param #10 (Word or Bit Addr)

IN11 / IO11: Param #11 (Word or Bit Addr)

IN12 / IO12: Param #12 (Word or Bit Addr)

IN13 / IO13: Param #13 (Word or Bit Addr)

IN14 / IO14: Param #14 (Word or Bit Addr)

IN15 / IO15: Param #15 (Word or Bit Addr)

IN16 / IO16: Param #16 (Word or Bit Addr)

IN17 / IO17: Param #17 (Word or Bit Addr)

IN18 / IO18: Param #18 (Word or Bit Addr)

IN19 / IO19: Param #19 (Word or Bit Addr)

IN20 / IO20: Param #20 (Word or Bit Addr)

INx: Read-Only Parameter

Contents of Address read

by Subroutine when called

Any of following Addresses:

Word: WX/WY, V, K, W

STW, TCC, TCP,

DSC, DSP, DCC

Bit: X/Y, C, B

IOx: Read/Write Parameter

Contents of Address read by

Subroutine when it called and

written by Subroutine when it

is completed.

Any of following Writeable Addr:

Word: WY, V, TCC, TCP,

DSC, DSP, DCC, W

Bit: Y, C, B

Description of Operation

The PGTS instruction functions as a RLL network output and executes each scan the instruction has
power flow (Input is ON). The following occurs when PGTS executes:

 Each Parameter is set equal to the contents of the specified address.

 Program execution immediately jumps the section of PLC program designated RLL
Subroutine with Reference Number matching PGTS REF# (1-32).

 The RLL Subroutine accesses the Parameter values by using special address types.
Discrete points are referenced as “Bx” and Words are referenced as “Wx” where

 x = Parameter Number (1-20).

 When RLL Subroutine is completed, the content of each address assigned to a Read/Write
Parameter (IOx) is set equal to the Parameter value.

 Program execution continues with the network immediately following the PGTS instruction.

When the PGTS instruction does not receive power flow, it does not execute.

178 CTI 2500 Series CPU Programming Reference Manual V1.33

Input Function

OFF PGTS instruction does not execute

ON

PGTS instruction executes.

IF (Parameter assigned):
 Parameter = Address Value

Calls RLL Subroutine defined by REF# (1-32)

When subroutine completes
IF (Read/Write Parameter):
 Address = Parameter Value

See SBR instruction for details on creating an RLL Subroutine.

Usage Guidelines

The following rules apply when using PGTS instructions:

 If no parameters are required, the GTS instruction should be used in place of PGTS since it
executes more efficiently.

 Any number (1-20) and any mix of discrete/word parameters can be used. However, all
parameters must be entered into the PGTS instruction box consecutively, starting with
Parameter #1. No parameter numbers can be skipped or left “blank”.

 Long Word (32-bit) values are not supported as a single parameter. If a Long Word data
type is required by RLL Subroutine, each 16-bit Word must be explicitly assigned to
consecutive parameter numbers in the PGTS instruction box.

 The PGTS instruction does not prohibit the RLL Subroutine from accessing memory
locations other than those referenced to the parameters. The subroutine can still directly
read and/or write to all available memory addresses.

 The RLL Subroutine must avoid direct access to memory locations that are also referenced
as PGTS parameters. For instance, V100 is entered as PGTS Read-Write Word Parameter
#1 (IO1 = V100). The subroutine should only read/write to this location via address “W1” –
not “V100”. This ensures the current value is always read, and prevents the case where the
value of V100 is overwritten by the contents of W1 when the subroutine is completed. If
direct access is desired, do NOT assign that address to a parameter identifier.

 The PGTS parameters contain the contents of the referenced address – and not a pointer
to the address. Therefore, take care when the subroutine includes instructions that access
multiple memory locations based on a start address where “Wx” and/or “Bx” is used as
operands, (i.e., MOVW or MWIR). In this case, the instruction will access consecutive
Parameter Memory locations (W or B) instead of multiple locations from the referenced
address.

 Indirect Discrete (Bx) and Word (Wx) addresses used in the RLL Subroutine must match
the parameter type assigned in the PGTS instruction box. Subroutine instructions with
mismatched operand address will not provide the expected results.

CTI 2500 Series CPU Programming Reference Manual V1.33 179

PGTS Example:

RTN

C24
PGTS

IO1: C40

IN2: V21

IN3: V22

IO4: V25

IO5: V26

IO6: C41

2

PGTS Parameters:

B1 = C30 (Read-only)

W2 = V11 (Read-only)

W3 = V12 (Read-only)

W4 = V15 (Read-Write)

W5 = V16 (Read-Write)

B6 = C31 (Read-Write)

PGTS Parameters:

B1 = C40 (Read-only)

W2 = V21 (Read-only)

W3 = V22 (Read-only)

W4 = V25 (Read-Write)

W5 = V26 (Read-Write)

B6 = C41 (Read-Write)

Start of RLL Subroutine #2

If B1 (IN1) = ON:

MUL Box computes

W2 * W3 = W4 (32-bit)

Results are written to

W4 (MSW) and W5 (LSW)

This network checks range of

MUL computation above.

IF W4 (MSW) = 0, then

Product is in the range of

0 <= x <= 65535.

B6 is set ON and written to

IO6 Param Address when

subroutine completes.

End of RLL Subroutine #2

End of Main RLL

B1 C99MUL

A: W2

B: W3

CC: W4

END

C24
PGTS

IN1: C30

IN2: V11

IN3: V12

IO4: V15

IO5: V16

IO6: C31

2

B1 B6
A = B

UINT

A: W4

B: 0

SBR

2

This example shows two PGTS instructions passing different parameters to a generic subroutine.

Parameter #1 (IN1) and Parameter #6 (IO6) are associated with discrete points and referenced

with Bit-type (B) addresses within subroutine.

Parameters #2-5 (IN2, IN3, IO4, IO5) are assigned to Word addresses and use Word-type (W)

addresses within subroutine.

NOTE: Any valid memory location can be accessed within the RLL Subroutine, but all addresses

assigned to PGTS Parameters should be accessed ONLY using indirect (B / W) addresses.

180 CTI 2500 Series CPU Programming Reference Manual V1.33

WARNING:

The referenced RLL Subroutine must exist and be properly delimited before the calling instruction
(GTS, PGTS, or PGTSZ) can be executed.

Take care when attempting to insert and/or edit RLL Subroutines using the Online Edit function. If
an instruction that calls a subroutine is entered without the associated RLL Subroutine properly
defined and the PLC is commanded to RUN mode, the controller will transfer to PROGRAM mode
and freeze outputs in their current state, resulting in unexpected operation. This could result in

damage to equipment and/or serious injury to personnel.

In order to prevent this action, we recommend always defining the RLL Subroutine section first,
and then enter the instruction(s) to call that subroutine.

Related instructions: END, GTS, PGTSZ, SBR, RTN

:

CTI 2500 Series CPU Programming Reference Manual V1.33 181

 Parameterized Go To Subroutine – Zero (PGTSZ)

The PGTSZ instruction is very similar to PGTS. It is used to call an RLL Subroutine and pass up to 20
discrete and/or word parameter values to it. The difference is that the PGTSZ instruction clears all bit
addresses assigned as discrete parameters when the Input is OFF.

 PGTSZ REF#

PARAM GO TO SUBROUTINE-ZERO
Input

REF# Subroutine Reference Number (1-32)

IN1 / IO1: Param #1 (Word or Bit Addr)

IN2 / IO2: Param #2 (Word or Bit Addr)

IN3 / IO3: Param #3 (Word or Bit Addr)

IN4 / IO4: Param #4 (Word or Bit Addr)

IN5 / IO5: Param #5 (Word or Bit Addr)

IN6 / IO6: Param #6 (Word or Bit Addr)

IN7 / IO7: Param #7 (Word or Bit Addr)

IN8 / IO8: Param #8 (Word or Bit Addr)

IN9 / IO9: Param #9 (Word or Bit Addr)

IN10 / IO10: Param #10 (Word or Bit Addr)

IN11 / IO11: Param #11 (Word or Bit Addr)

IN12 / IO12: Param #12 (Word or Bit Addr)

IN13 / IO13: Param #13 (Word or Bit Addr)

IN14 / IO14: Param #14 (Word or Bit Addr)

IN15 / IO15: Param #15 (Word or Bit Addr)

IN16 / IO16: Param #16 (Word or Bit Addr)

IN17 / IO17: Param #17 (Word or Bit Addr)

IN18 / IO18: Param #18 (Word or Bit Addr)

IN19 / IO19: Param #19 (Word or Bit Addr)

IN20 / IO20: Param #20 (Word or Bit Addr)

INx: Read-Only Parameter

Contents of Address read

by Subroutine when called

Any of following Addresses:

Word: WX/WY, V, K, W

STW, TCC, TCP,

DSC, DSP, DCC

Bit: X/Y, C, B

IOx: Read/Write Parameter

Contents of Address read by

Subroutine when it called and

written by Subroutine when it

is completed.

Any of following Writeable Addr:

Word: WY, V, TCC, TCP,

DSC, DSP, DCC, W

Bit: Y, C, B

Description of Operation

PGTSZ functions as a RLL network output instruction.

1. The following occurs when PGTS instruction receives power flow (Input is ON):

 Each Parameter is set equal to the contents of the specified address.

 Program execution immediately jumps the section of PLC program designated RLL
Subroutine with Reference Number matching PGTS REF# (1-32).

 The RLL Subroutine accesses the Parameter values by using special address types.
Discrete points are referenced as “Bx” and Words are referenced as “Wx” where

 x = Parameter Number (1-20).

 When RLL Subroutine is completed, the content of each address assigned to a
Read/Write Parameter (IOx) is set equal to the Parameter value.

 Program execution continues with the network immediately following the PGTS
instruction.

2. The following occurs when PGTS instruction does not receive power flow:

 Each Discrete Parameter (assigned to a bit address) is turned OFF.

 The RLL Subroutine is not called for execution, and no other action is taken.

182 CTI 2500 Series CPU Programming Reference Manual V1.33

Input Function

OFF PGTSZ executes as follows:

IF (Discrete Parameter)
 Bit Address turns OFF

ON

PGTSZ executes as follows:
(Operation Identical to PGTS)

IF (Parameter assigned):
 Parameter = Address Value

Calls RLL Subroutine defined by REF# (1-32)

When subroutine completes
IF (Read/Write Parameter):
 Address = Parameter Value

See SBR instruction for description and example of an RLL Subroutine.

See PGTS instruction for description of operation when Input is ON.

WARNING:

The referenced RLL Subroutine must exist and be properly delimited before the calling instruction
(GTS, PGTS, or PGTSZ) can be executed.

Take care when attempting to insert and/or edit RLL Subroutines using the Online Edit function. If
an instruction that calls a subroutine is entered without the associated RLL Subroutine properly
defined and the PLC is commanded to RUN mode, the controller will transfer to PROGRAM mode
and freeze outputs in their current state, resulting in unexpected operation. This could result in

damage to equipment and/or serious injury to personnel.

In order to prevent this action, we recommend always defining the RLL Subroutine section first,
and then enter the instruction(s) to call that subroutine.

Related instructions: END, GTS, PGTS, SBR, RTN

CTI 2500 Series CPU Programming Reference Manual V1.33 183

 Start of Subroutine (SBR)

The SBR instruction is used as a start delimiter for an RLL Subroutine. A RLL Subroutine is a set of RLL
networks executed only when called by the GTS, PGTS, or PGTSZ instruction.

SBR

REF#

REF# Subroutine Reference Number

(1-255 when called by GTS)

(1-32 when called by PGTS or PGTSZ)

Description of Operation

The SBR instruction is entered as an unconditional RLL network output.

RLL Subroutines execute as described below:

 The subroutine must be called from a GTS, PGTS, or PGTSZ instruction.

 Execution then jumps to the SBR instruction with Subroutine Reference Number (REF#) that
matches the REF# designated in the calling instruction.

o REF# has a valid range of 1-255 if called by GTS

o REF# has a valid range of 1-32 if called by PGTS or PGTSZ

 Execution of RLL Subroutine continues until an RTN instruction is encountered. Program
execution then returns to the network immediately following the point where the subroutine was
called.

 MCR and/or JMP Zones of Control are in effect when the subroutine is called remain active
while the RLL Subroutine executes.

 It is permitted to initiate a MCR and/or JMP Zone of Control within a RLL Subroutine. If it is not
ended within the subroutine, the zone remains active after the subroutine is completed.

 A SKP-to-LBL zone can exist within a RLL Subroutine. However, both instructions must be
defined within a single subroutine for it to be valid.

184 CTI 2500 Series CPU Programming Reference Manual V1.33

Usage Guidelines

1. All subroutines must be located after the main RLL Program. Subroutines are separated from the
main RLL by the END instruction. The ENDC instruction cannot be used for this purpose.

2. Each subroutine must be delimited by SBR as the first instruction and Unconditional RTN as the
last instruction. A subroutine may also include multiple “Conditional RTN” instructions if desired.
However, an Unconditional RTN must be final instruction in each subroutine.

3. Subroutines can be inserted into the program in any REF# numerical order.

4. A subroutine calling instruction (GTS, PGTS, PGTSZ) can be placed within a RLL Subroutine to
call another subroutine. RLL Subroutines can be nested up to 32 levels.

5. When using PGTS or PGTSZ to pass Parameters, the RLL Subroutine accesses the Parameter
values by using special address types. Discrete points are referenced as “Bx” and Words are
referenced as “Wx” where x = Parameter Number (1-20). See PGTS for a description and
example of using Parameters within subroutine.

WARNING:

The referenced RLL Subroutine must exist and be properly delimited before the calling instruction
(GTS, PGTS, or PGTSZ) can be executed.

Take care when attempting to insert and/or edit RLL Subroutines using the Online Edit function. If
an instruction that calls a subroutine is entered without the associated RLL Subroutine properly
defined and the PLC is commanded to RUN mode, the controller will transfer to PROGRAM mode
and freeze outputs in their current state, resulting in unexpected operation. This could result in

damage to equipment and/or serious injury to personnel.

In order to prevent this action, we recommend always defining the RLL Subroutine section first,
and then enter the instruction(s) to call that subroutine.

CTI 2500 Series CPU Programming Reference Manual V1.33 185

End of

main RLL

Start of RLL

Subroutine #44

Unconditional RTN

End of Subroutine

Calls RLL

Subroutine #13

Calls RLL

Subroutine #44

Conditional RET

Start of RLL

Subroutine #13

Unconditional RTN

End of Subroutine

SBR Example:

END

GTS

X1 13

RTN

C15STW1.6 MOVW

A: STW200

B: V175

N: 1

I

Y81X3 C33

RTN

SBR

44

SBR

13

C22C8 ADD

A: V55

B: V58

C: V60

GTS

X1 44

C27

RTN

Related instructions: END, GTS, PGTS, PGTSZ, RTN

186 CTI 2500 Series CPU Programming Reference Manual V1.33

 Return from Subroutine (RET)

The RTN instruction is used to terminate execution of a RLL Subroutine. An Unconditional Return must
be used as the last statement in each RLL Subroutine.

Conditional Return

RTN

Unconditional Return

RTN

INPUT

Description of Operation

The RTN instruction can only be entered as a network output within a RLL Subroutine.

Whenever it receives power flow, RTN executes. The RLL Subroutine currently running is ended and
program execution returns to the network immediately following the instruction (GTS, PGTS, or
PGTSZ) that called the subroutine.

The RTN instruction can exist in two forms:

1. Conditional Return

 One or more of these networks may be included within a RLL Subroutine

 If Input is ON, RTN executes as described above

 If Input is OFF, the RLL Subroutine continues to execute.

2. Unconditional Return

 Always executes

 Must be included as the last instruction in each RLL Subroutine

See SBR instruction for description and example of an RLL Subroutine.

Input Function

OFF Conditional RTN instruction does not execute

ON

RTN instruction executes.

RLL Subroutine execution is terminated.
Program control returns to network immediately
following the instruction (GTS, PGTS, PGTSZ) that
called the subroutine.

Related instructions: END, GTS, PGTS, PGTSZ, SBR

CTI 2500 Series CPU Programming Reference Manual V1.33 187

 PID Fast Loop (PID)

The PID instruction calls the referenced Analog PID control loop for immediate in-line execution.

PID

OutputInput

A: Word Address that contains

Fast Loop Number

or Constant (129 - 512)

REF#

CALL PID

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

REF#: Instruction Reference No

(0-32767) - see Notes

Description of Operation

The Fast Loop function performs immediate execution of the specified analog control loop algorithm.
The results are available to the next element in the current RLL network.

 The PID instruction executes each scan the Input is ON.

1. The Fast Loop Number is determined by the contents in (A). The designated loop must be in
the valid range for Fast Loops (129 thru 512)

 If (A) contains a Word Address, the value of that memory location is used.

 Otherwise, (A) is read as an integer constant.

2. If the specified Fast Loop cannot be executed due to one of the following reasons, PID
operation is aborted, User Program Error (STW1.6) set ON, RLL Instruction Failed (STW.11)
set ON, and Output turns OFF:

 Loop number is unconfigured, User Error Cause in STW200 set to 13

 Loop number is not within valid range for Fast Loops, STW200 set to 13.

 Loop number is disabled, STW200 set to 14.

3. Otherwise, the analog control loop algorithm is run to completion and Output turns ON.

Input Function Output

OFF PID instruction does not execute OFF

ON

PID instruction executes.

IF (FAST LOOP NUMBER (from A) is invalid)
 PID execution aborted.
 Set User Program Error - STW1.6 ON)
 Set RLL Instruction Failed - STW1.11 ON
 Write Error Cause to STW200 (see above)

ELSE
 PID algorithm executes to completion

OFF

ON

188 CTI 2500 Series CPU Programming Reference Manual V1.33

Usage Guidelines

1. Fast Loops are not supported by CPU Models 2500-C100 and 2500-C200.

2. Fast Loops are programmed using the same criteria as cyclic PID Loops (1-128) with the
following exceptions:

 SAMPLE RATE field is unused since it does not apply to loops initiated from RLL.

 RAMP/SOAK function is unsupported

3. Fast Loops can be scheduled to execute every scan, based on TMR/TMRF instruction expiration,
or placed within a Cyclic RLL Task. Proper execution is ensured only when the Fast Loop is
scheduled on a fixed time interval.

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

CTI 2500 Series CPU Programming Reference Manual V1.33 189

 Call SF Program (SFPGM)

The SFPGM instruction calls the referenced Special Function (SF) Program for execution.

SFPGM
OutputInput

 SFP#

SF# Special Function Program

to execute - see Notes

CALL SF PROGRAM

IN-LINE: YES - Selects immediate in-line

execution within RLL Program

NO - Schedules SFPGM for

execution at end of RLL scan

SF Program Overview

SF Programs are written in a statement-driven programming language similar to BASIC. The
controller automatically compiles all SF statements and utilizes a hardware floating point co-
processor to greatly improve execution time, especially for complex mathematical and logical
expressions.

When the SF Program is created, it is designated as one of the following types - Normal (Non-
Priority), Priority, Cyclic, or Restricted.

 NORMAL is the default SF Program type that can be called by the SFPGM instruction, PID
Loops, or Analog Alarms. NORMAL programs can run IN-LINE or be queued for execution at
the end of the RLL scan.

 PRIORITY is identical to NORMAL program except for order of execution when queued to run
at the end of RLL scan. PRIORITY programs are maintained in a separate queue and execute
in a separate time slice that runs prior to the NORMAL SF time slice.

 CYCLIC program is executed only when called by the SFPGM instruction. It must be queued
for execution (IN-LINE = NO) and is automatically re-queued to run at the specified cycle time
as long as the Input to SFPGM instruction is ON.

 RESTRICTED programs can be called only from PID Loops or Analog Alarms. Restricted
Programs cannot be called by the RLL SFPGM instruction.

See Chapter 3 for a detailed description on SF Programs.

Note:

The maximum number of Special Function Programs is dependent on the controller model.
 2500-C100 supports SF Programs numbered 1-64.

Other models support SF Programs numbered 1-1023.

The number entered in SFP# field must be valid for the controller model used.

190 CTI 2500 Series CPU Programming Reference Manual V1.33

Description of Operation

The SFPGM instruction schedules the referenced SF Program for execution based on SF Program
type and In-Line execution selection.

1. When In-Line execution is not selected (IN-LINE = NO), SFPGM executes as follows:

a. If SF Program (SFP#) type is NORMAL or PRIORITY:

 When Input transitions OFF-to-ON, the SF Program (SFP#) is placed in the next
available position in the appropriate FIFO queue for execution at the end of the
RLL scan.

 The Input must remain ON until the SF Program runs to completion. If Input turns
OFF before the SF Program executes, it is removed from the queue.

 When SF Program is completed, the Output turns ON.

 When Input turns OFF, the Output turns OFF.

 Input must transition OFF-to-ON for the SF Program to execute again.

b. If SF Program type is Cyclic:

 When Input transitions OFF-to-ON, the SF Program (SFP#) is placed in the next
available position in the cyclic FIFO queue for execution at the end of the RLL
scan. If queue is full (32 Cyclic SF Programs already queued), SF Processor
“Cyclic SFP Queue is Full” Error is reported in STW162.8 set ON. If the Input stays
ON, queue entry is attempted again on the next PLC scan.

 When the Cyclic SF Program executes one time, the Output turns ON.

 As long as the Input remains ON, the Cyclic SF Program is re-queued for execution
again based on programmed Cycle Time.

 When Input turns OFF, the SF Program is immediately removed from the execution
queue, and the Output turns OFF

2. When In-line execution is selected (IN-LINE = YES):

a. If SF Program type is NORMAL or PRIORITY:

 Each scan Input is ON, the designated SF Program (SFP#) immediately runs to
completion. Results can be used by the next RLL instruction in the current network.
The Output turns ON.

 If the Input is OFF, SFPGM does not execute. The Output turns OFF.

3. If the specified SF Program cannot execute due to one of the following reasons, SFPGM
operation is aborted, User Program Error (STW1.6) set ON, RLL Instruction Failed (STW.11)
set ON, and Output turns OFF:

 SF Program does not exist, User Error Cause in STW200 set to 8.

 SF Program is not enabled, STW200 set to 9.

 SF Program type is CYCLIC and In-Line execution is selected (INLINE = YES),
STW200 set to 10.

 SF Program type is RESTRICTED, STW200 set to 10.

 On-Line Edit operation is in progress, STW200 set to 11.

CTI 2500 Series CPU Programming Reference Manual V1.33 191

Input SFP Type
IN-

LINE
Function Output

OFF Don’t Care NO IF (SF Program previously queued
 but not yet executed)
 Remove SF Program from queue

OFF

OFF Don’t Care YES SFPGM does not execute OFF

OFF-to-
ON
transition

NORMAL NO IF (SF Program Enabled)

 IF (SFP Type = Normal OR Priority)
 Place SF Program in appropriate FIFO
 for execution at end of RLL scan

 ELSE (SFP Type = Cyclic)
 IF (FIFO Queue has < 32 entries)
 Place SFP in Queue for execution
 during Cyclic SF time slice

 ELSE (Cyclic SFP Queue is full)
 SF Proc Error STW162.8 turns ON

ELSE (Problem with SF Program)
 Error reported - STW1.6 / STW1.11 ON

 IF (On-Line Edit in Progress)
 User Error Cause STW200 = 11

 ELSE IF (SF Program does Not Exist)
 User Error Cause STW200 = 8

 ELSE (SF Program Not Enabled)
 User Error Cause STW200 = 9

OFF

PRIORITY

CYCLIC

ON NORMAL NO IF (SF Program execution complete)
ELSE
 SF Program not completed

ON

OFF

PRIORITY

ON NORMAL NO Immediately Execute SF Program
IF (SF Program Completes without Error)
ELSE
 Error Detected

ON

OFF

PRIORITY

ON CYCLIC NO IF (Elapsed Time >= Cycle Time)
 Re-queue SF Program in Cyclic FIFO
 for execution at end of RLL scan

IF (SFP execution completed at least once)
ELSE (SFP never executed)

ON
OFF

ON CYCLIC YES Invalid SFPGM configuration.
Error reported - STW1.6 / STW1.11 set ON
User Error Cause STW200 = 10

OFF

ON RESTRICTED Don’t
Care

Invalid SFPGM configuration.
Error reported - STW1.6 / STW1.11 set ON
User Error Cause STW200 = 10

OFF

192 CTI 2500 Series CPU Programming Reference Manual V1.33

 Call SF Subroutine (SFSUB)

The SFSUB instruction calls the referenced Special Function (SF) Subroutine for execution.

Note:

This instruction has been enhanced to increase the number of parameters that may be
passed to the specified SF Subroutine from 5 to 10. The SF Subroutine can access

these parameters via addresses P1-P10.

This feature is available only when using 2500 Series CPU firmware V6.0 or later and
505 WorkShop V4.50 or later as the PLC programming software.

SFSUB
OutputInput

 SFS#

SFS# Special Function Subroutine

to execute - see Notes

IN-LINE: YES - Selects immediate in-line

execution within RLL Program

NO - Schedules SFSUB for

execution at end of RLL scan

STOP / CONTINUE ON ERROR

STOP/CONT: STOP - SFSUB terminates if

error is detected

CONT - SFSUB continues to

 execute after error detected.

(Errors handled within SFSUB).

P1: Parameter #1

P2: Parameter #2

P3: Parameter #3

P4: Parameter #4

P5: Parameter #5

ER: Error Status (Bit Address) or

SFEC (Word Address) SFEC Word Address:

First of 3 Word Block:

V or WY

Error Status Bit Addr:

Y or C

Constant,

Bit/Word Element,

or Expression
P6: Parameter #6

P7: Parameter #7

P8: Parameter #8

P9: Parameter #9

P10: Parameter #10

** Parameters 6-10 available

only when using CPU firmware

V6.0 or later. See Note above.

Note:

The maximum number of Special Function Subroutines is dependent on the controller model.
 2500-C100 supports SF Subroutines numbered 1-64.

Other models support SF Subroutines numbered 1-1023.

The number entered in SFS# field must be valid for the controller model used.

CTI 2500 Series CPU Programming Reference Manual V1.33 193

SF Subroutine Overview

SF Subroutines are written in a statement-driven programming language similar to BASIC. The
controller automatically compiles all SF statements and utilizes a hardware floating point co-
processor to greatly improve execution time, especially for complex mathematical and logical
expressions.

SFSUB instructions referencing the same SFS# can be included multiple places in an RLL program.
This allows an application to execute the same SF Subroutine many times during a single scan using
different parameter sets.

When inserted, the SFSUB instruction is displayed showing five (5) parameters. This parameter list
may be extended to specify up to ten (10) parameters using the “Add CFUNC/SFSUB Parameter”
function under the “Program” selection in the WorkShop main toolbar.

The Error Status (ER) can be assigned to a single bit (Y or C) or Word Address corresponding to the
Special Function Error Code (SFEC). The SFEC is a contiguous 3-word block that provides detailed
error information.

The “STOP/CONTINUE ON ERROR” field determines the SFSUB action when an error is detected
during execution:

 STOP terminates the SF Subroutine immediately. Error status is reported in Error Status Bit
Address or SFEC Address designated in “ER” field.

 CONT causes the SF Subroutine to continue execution after an error is detected. This allows
the user to detect errors (via SFEC variable) and take corrective action as required.

SF Subroutines differ from SF Programs in that up to ten (10) parameters can be specified.
Parameters must be entered in order starting with Parameter #1 and specified as follows:

 Constant (32-bit integer or real number)

 Discrete or Word element – Address consisting of data type and number.

Can be specified as Integer or Real Number (by adding a decimal point after the element)
Examples: V150 = integer address, V160. = real (32-bit) address

 Mathematical expression to be evaluated and/or passed to the referenced SF Subroutine.
See example in this Section.

The controller maintains two separate queues for managing SF Subroutine operations. One queue
handles SFSUB 0 instructions, and the other holds all other SFSUB instructions.

 SFSUB 0 (SFS# = 0) is a special case where the instruction parameters entered as
expressions are executed without calling an actual SF Subroutine (since SFSUB 0 program
does not exist).

 All other SFSUB instructions (SFS# 1-64 for Model 2500-C100 and SFS# 1-1023 for other
models) are executed so that the parameters are first processed and then passed to the
referenced SF Subroutine program.

See Chapter 3 for a detailed description on SF Subroutines.

194 CTI 2500 Series CPU Programming Reference Manual V1.33

Description of Operation

The SFSUB instruction schedules the referenced SF Subroutine for execution based on SF
Subroutine Number and In-Line execution selection.

1. When In-Line execution is not selected (IN-LINE = NO), SFSUB executes as follows:

 When Input transitions OFF-to-ON, the SF Subroutine (SFS#) is placed in the next
available position in the appropriate FIFO queue for execution at the end of the RLL
scan. If queue is full, placement is attempted again on the next scan if the Input stays
ON.

 The Input must remain ON until the SF Subroutine runs to completion. If Input turns
OFF before the SF Program executes, it is removed from the queue.

 If SFSUB 0 is designated, the instruction parameters are executed. If the SFS# is
non-zero, the instruction parameters are processed and passed to the referenced
SFSUB, the SF Subroutine statements are executed.

 When the SF Subroutine is completed, the Output turns ON.

 When Input turns OFF, the Output turns OFF.

 Input must transition OFF-to-ON for the SF Subroutine to execute again.

2. When In-line execution is selected (IN-LINE = YES):

 If SFSUB 0 is designated, the instruction parameters are executed. If the SFS# is
non-zero, the instruction parameters are processed and passed to the referenced
SFSUB, the SF Subroutine statements are executed.

 When the SF Subroutine is completed, the Output turns ON.

 Each scan Input is ON, the designated SF Subroutine (SFS#) immediately runs to
completion. Results can be used by the next RLL instruction in the current network.
The Output turns ON.

 If the Input is OFF, SFSUB does not execute. The Output turns OFF.

3. If the specified SF Subroutine cannot execute due to one of the following reasons, SFSUB
operation is aborted, User Program Error (STW1.6) set ON, RLL Instruction Failed (STW.11)
set ON, and Output turns OFF:

a. If an On-Line Edit is in progress on the network containing an SFSUB instruction
marked for In-Line execution (IN-LINE = YES), the SFSUB operation is aborted prior to
parameter evaluation. User Error Cause in STW200 set to 11.

b. The following conditions terminate the SFSUB operation after parameter evaluation.
The SF Subroutine is not called.

 SF Subroutine does not exist, STW200 set to 8.

 SF Subroutine is not enabled, STW200 set to 9.

CTI 2500 Series CPU Programming Reference Manual V1.33 195

SFSUB Example:

SFSUB Settings:

Calls SF Subroutine #1 (SFS#1) for IN-LINE execution.

Error Reporting via SFEC (V240-V242)

P1: Real Number Constant

P2: 16-Bit Word Value (V106)

P3: Calculates V124 as Unsigned 16-bit Integer and then passes value as P3 to SF Subroutine #1

P4: Calculates P4 as Signed 16-bit Integer and then passes value to SF Subroutine #1

P5: Calculates V91 as Real Number and then passes value as P5 to SF Subroutine #1

ER: V240

IN-LINE: YES

 1

STOP

P1: 3.14159

P2: V106

P3: V124U := K15 * V3

P4: (V86 * 2 + 14)

P5: V91. = V97. * 2.71

SFSUB

196 CTI 2500 Series CPU Programming Reference Manual V1.33

SFSUB0 Example:

SFSUB0 Execution:

When IN-LINE is set to YES, instruction executes each scan input is TRUE and results are valid

for following RLL instruction to use.

When IN-LINE is set to NO, instruction is triggered once for each OFF-to-ON transition of input and

executes during “RLL SF Sub Zero (0)” time slice performed at the end of each PLC scan. Results

are not available until Output coil is turned ON indicating instruction has completed.

Sets C95 = 1 if error detected while executing any expression.

Performs calculations on up to 10 valid SF MATH or IMATH expressions.

Expressions can contain Bits, Signed/Unsigned Integers, Long (32-bit) Integers, or Real Numbers.

Expressions must be entered in consecutive Parameter fields starting at P1.

When a blank Parameter is found during execution, the SFSUB0 instruction terminates.

ER: C95

IN-LINE: YES

0

STOP

P1: V364 := V125 * 4

P2: V47U := K21 + V69

P3: V51. := SQRT (V17.)

P4: V79L := V83U * 25

P5: C52 := NOT (X32)

SFSUB

CTI 2500 Series CPU Programming Reference Manual V1.33 197

Input
IN-

LINE
Function Output

OFF NO IF (SF Subroutine previously queued
 but not yet executed)
 Remove SF Subroutine from queue

OFF

OFF YES SFSUB does not execute OFF

OFF-to-ON
transition

NO IF (SF Subroutine Enabled)

 IF (FIFO Queue < 32 entries)
 Place SF Subroutine in appropriate FIFO
 for execution at end of RLL scan

 ELSE (FIFO Queue Full)
 Treat next scan as OFF-to-ON
 Input transition

ELSE (Problem with SF Subroutine)
 Error reported - STW1.6 / STW1.11 ON

 IF (On-Line Edit in Progress)
 User Error Cause STW200 = 11

 ELSE IF (SF Subroutine does Not Exist)
 User Error Cause STW200 = 8

 ELSE (SF Subroutine Not Enabled)
 User Error Cause STW200 = 9

OFF

ON NO IF (SF Subroutine execution complete)
ELSE
 SF Subroutine not completed

ON

OFF

ON YES Immediately Execute SFSUB
IF (SFSUB Completes without Error)
ELSE
 Error Detected

ON

OFF

ON Don’t
Care

Invalid SFPGM configuration.
Error reported - STW1.6 / STW1.11 set ON
User Error Cause STW200 = 10

OFF

198 CTI 2500 Series CPU Programming Reference Manual V1.33

 Start RLL Task (TASK)

The TASK instruction designates the instructions to be executed as main RLL task (TASK1) and Cyclic
RLL task (TASK2).

TASK TASK#

TASK#: Constant

1 = Main RLL Task

2 = Cyclic RLL Task

T: Cycle Time (ms)

Word Address or

Constant

Any Word Address:

WX/WY, V, K, STW, TCC,

TCP, DSC, DSP, DCC, W

Description of Operation

The TASK instruction is entered as an unconditional RLL network output.

 The controller supports two different groups and priorities of RLL instructions:

1. Main RLL networks are the normal priority instructions that execute once per PLC scan

2. Cyclic RLL networks are the high priority instructions that execute on the specified time
interval. The Cyclic RLL task interrupts all other PLC operations (Main RLL, Analog
Tasks, I/O Update) in order to execute when required.

 The RLL program is limited to one Main RLL Task (TASK1) and (optionally) one Cyclic RLL
Task (TASK2). However, each task can consist of one or more segments of RLL instructions.
Each task segment is delimited by the TASK instruction in the first RLL network. A task
segment is terminated by another TASK instruction or END instruction. All task segments
must be placed in front of the END instruction.

 Each task executes RLL instructions in order from top to bottom as positioned in the program.

 If the first RLL network does not include the TASK instruction, TASK1 is assumed. Therefore,
all RLL instructions are executed as Main RLL until a TASK2 instruction is encountered.

 The Task Cycle Time (T) applies only to the Cyclic RLL Task (TASK2). The Cycle Time can be
designated in milliseconds as a signed integer constant (0-32767) or as an unsigned integer
value (0-65535) in the specified Word Memory Address. The use of a Word Address allows
the cycle interval to be altered during run time. If the Task Cycle Time = 0, the default time of
10 msec is used.

 If the Cyclic RLL Task consists of more than one TASK2 segment, the Task Cycle Time (T)
specified in first TASK2 instruction determines the Cyclic RLL Task interval.

CTI 2500 Series CPU Programming Reference Manual V1.33 199

Usage Guidelines

1. Cyclic RLL (TASK2) instructions are often used to execute Immediate I/O instructions. This
provides a means to update critical I/O points at fixed intervals independent of PLC scan times.
Note that I/O module response times are usually 5-10 msec, and updating an output point faster
than 10 msec may not be reflected in the field device.

2. Careful consideration must be taken to determine the required Task Cycle Time for TASK2
operation. TASK2 execution interrupts other PLC scan functions and extends total scan time. The
following criteria should be used to assess TASK2 time requirements:

 Peak Execution Time can be displayed via HMI using SF variables TPET1 and TPET2.
TPET1 shows maximum time to execute Main RLL instructions during a single PLC scan,
and TPET2 shows the maximum time to complete a cycle of all Cyclic RLL instructions.

 It is possible to set TASK2 Cycle Time so that almost all processing time is used
executing only Cyclic RLL instructions. When TPET2 approaches the specified TASK2
Cycle Time, the total PLC scan time will be affected.

 TASK2 execution can cause the PLC scan to extend beyond the specified time when.
“Fixed” or “Variable with Upper Limit” scan mode is selected, If this occurs, RLL TASK1
Overrun (STW219.1) and Scan Overrun (STW1.14) bits are set ON.

 If the Cyclic RLL does not complete execution within the specified Task Cycle Time, the
RLL TASK2 Overrun Error (STW219.2) is set ON. In addition, one Cyclic RLL cycle is
skipped due to the overrun condition. For instance, task with 5 msec cycle time that
overruns then executes at 10 msec interval.

3. Subroutines can be called from any task. However, a given subroutine should not be called from
both TASK1 and TASK2 instructions. RLL Subroutines are not re-entrant and cannot be executed
by both tasks concurrently.

4. Due to inefficiencies between switching between Main RLL and Cyclic RLL tasks, we do not
recommend setting TASK2 Cycle Time less than 4 msec regardless of TASK2 execution time
unless there is a definite requirement for more frequent operation.

WARNING:

Take care when determining the time interval for Cyclic RLL execution.

When TASK2 execution time approaches the specified Task Cycle Time, processing time allocated
to Main RLL decreases. This can result in a

Scan Watchdog timeout. This causes a Fatal Error condition where the controller turns OFF all
discrete outputs and freezes all analog outputs.

This could lead to equipment damage and/or serious injury to personnel.
Please read the TASK instruction Usage Guidelines to minimize the risk of this occurrence.

200 CTI 2500 Series CPU Programming Reference Manual V1.33

Start of TASK2

segment #1

Main RLL

instructions

End of Main RLL

and Cyclic RLL

TASK Example:

RTN

SBR

TASK 2

T: V42

END

TASK 1

T: 0

TASK 2

T: 0

Start of Main RLL

TASK1 assumed

Cyclic RLL

instructions

Start of TASK1

segment #2

RLL

Subroutines

Cyclic RLL

instructions

Start of TASK2

segment #2

Cyclic RLL

instructions

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Main RLL (TASK1) executes following networks once per scan: 1,2,3,7, 8, 9

Cyclic RLL (TASK2) executes following networks each cycle: 4, 5,6, 10, 11

Task Cycle Time for TASK2 is determined by the value in Word Address V42

(set by the first TASK2 instruction encountered).

CTI 2500 Series CPU Programming Reference Manual V1.33 201

 Special Operations

These instructions perform operations in support of other RLL instructions.

 Load Data Constant (LDC)

The LDC instruction moves a positive integer constant into the designated PLC memory location.

LDC

OutputInput

A: Destination Word Address

REF#

LOAD DATA CONSTANT

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

REF#: Instruction Reference No

(0-32767) - see Notes

N: Data Constant to be loaded

(0 - 32767)

Description of Operation

The LDC instruction executes each scan the Input is ON.

 Data Constant (N) is written to Word Address (A).
Data Constant must be a positive integer in the range: 0 thru +32767

 The Output turns ON.

Input Function Output

OFF LDC instruction does not execute OFF

ON

LDC instruction executes as follows:

Constant value (N) written to Word Address (A)

ON

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: LDA, MOV, MWI

202 CTI 2500 Series CPU Programming Reference Manual V1.33

 Load Address (LDA)

The LDA instruction copies a logical address of the source memory location into the specified destination
address. The LDA instruction is primarily used to load an indirect address before the MOVE instruction is
executed.

LDA

OutputInput

BB: Destination Address -

Long Word Address or Addr Pointer

REF#

A: Source Address (to be loaded) -

Word Address or Addr Pointer

REF# Instruction Reference Number

(0-32767) - see Notes

AI: Source Index - Blank (unused),

Address, or Constant (0-65535)

BI: Destination Index - Blank (unused),

Address, or Constant (0-65535)

See description of

parameter fields below

LOAD ADDRESS

Parameter Fields

Name Description Valid Address Values

A

Source Address:
(1) Word Address
(2) Indirect Address (Address Pointer) – Holds address of
 another memory location

Any Word Address:
WX/WY, V, K, STW, TCC,
TCP, DSC, DSP, DCC, W

AI

Optional Source Index – Selects a Word offset from the
address specified in (A). Can be entered as:
(1) Blank (field not used)
(2) Unsigned integer constant (0-65535)
(3) Word Address

Any Word Address:
WX/WY, V, K, STW, TCC,
TCP, DSC, DSP, DCC, W

BB

Destination Address where data is written.
(1) Address of (32-bit) Long Word
(2) Indirect Address (Address Pointer)

For Direct Address:
Any Writeable Address

For Indirect Address:
Any Word Address

BI

Optional Destination Index – Selects a Word offset from the
address specified in (BB). Can be entered as:
(1) Blank (field not used)
(2) Unsigned integer constant (0-65535)
(3) Word Address

Any Writeable Address:
WY, V, TCC, TCP, DSC,
DSP, DCC, W

CTI 2500 Series CPU Programming Reference Manual V1.33 203

Logical Addressing

The LDA instruction allows the address of a PLC memory location to be stored in another memory
location. The address is stored as a 32-bit logical address as shown below:

Byte 1Byte 0 Byte 2 Byte 3

Word OffsetMemory Type

The PLC Memory Type stored in Byte 0. The zero-relative Word Offset occupies the next three bytes.
Available Memory Types are listed in the following chart

Memory Area
Memory Type

Code (Hex)

Variable (V) 01

Constant (K) 02

Analog Input (WX) 09

Analog Output (WY) 0A

Timer/Counter Preset (TCP) 0E

Timer/Counter Current (TCC) 0F

Drum Step Preset (DSP) 10

Drum Step Current (DSC) 11

Drum Count Preset (DCP) 12

Status Word (STW) 1A

Drum Count Current (DCC) 1B

204 CTI 2500 Series CPU Programming Reference Manual V1.33

Entering Source Information

1. The Source Address (A) specifies the Word Address to be loaded into Destination (BB). The
Source Address can be designated as one of the following types:

 Word Address (any valid memory address) – Specifies the logical address to be loaded to
the Destination Address.

 Indirect Address (Address Pointer) – Specified Long Word Address holds the value of
another memory location whose logical address is loaded into the Destination Address. An
Address Pointer is a 32-bit value and is designated by inserting a “@” character as a prefix
to the address, i.e., @V125 or @K20.

2. The Source Index (AI) field designates an index (or Word offset) from the Start Address (A)
specified. When used, the actual starting location is Start Address (A) plus Index (AI). The Source
Index can be used with either Direct or Indirect Addresses through one of the following values:

 Blank – No indexing performed and no entry is required

 Constant Index – Range: 0 to 65535 (value of 0 results in no index)

 Variable Index – Value of the Word Address entered is interpreted as an Unsigned Integer
(0 to 65535) and used as relative offset from (TS).

3. If Source Address (A) is specified as an Indirect Address with Source Index (AI), the actual
address is determined by first calculating the Indirect Address location and then indexing from
that point.

Entering Destination Information

1. The (BB) field specifies the Destination Address for the Data Elements by entering:

 Word Address (any writeable memory address) – The logical address of the memory
location specified in (A) is loaded as a 32-bit value into this Long Word Address.

 Indirect Address (Address Pointer) – Specified Long Word Address holds the value of
another memory location that is used as the Destination Address. An Address Pointer is a
32-bit value and is designated by inserting a “@” character as a prefix to the address, i.e.,
@V125 or @K20.

2. The Destination Index (BI) field designates an index (or relative offset) from the Destination
Address (TD) specified. When used, the actual starting location is Destination Address (BB) plus
Index (DI). The Destination Index can be used with either Direct or Indirect Addresses through
one of the following values:

 Blank – No indexing performed and no entry is required

 Constant Index – Range: 0 to 65535 (value of 0 results in no index)

 Variable Index – Value of the Word Address entered is interpreted as an Unsigned Integer
(0 to 65535) and used as relative offset from (BB).

3. If Destination Address (BB) is specified as an Indirect Address with Destination Index (BI), the
actual address is determined by first calculating the Indirect Address location and then indexing
from that point.

CTI 2500 Series CPU Programming Reference Manual V1.33 205

Description of Operation

 The LDA instruction executes each scan the Input is ON.

1. The address to be loaded is determined by Source Address (A) and Source Index (AI).

2. The memory location to hold the address is determined by Destination Address (BB) and
Destination Index (BI).

3. If any referenced address is undefined, the LDA operation is aborted. The Output turns OFF
and contents of all locations remain unchanged. The following errors are reported:

 User Program Error (STW1.6) is set ON

 RLL Instruction Error (STW1.11) is set ON

 If this is the first RLL instruction error detected in the current PLC scan, the Table
Overflow Error (value = 5) is written to STW200

4. Otherwise, the specified address is written into the destination memory locations.
The Output turns ON.

Input Function Output

OFF LDA instruction does not execute OFF

ON

LDA instruction executes as follows:

Source Address to be loaded is determined by
Address (A) and Index (AI).
Destination Address is determined by Address (BB)
and Index (BI).

IF (Source/Destination Address Valid)
 Load Logical Address into Destination

ELSE (Invalid Address Detected)
 Set User Program Error (STW1.6) ON
 Set RLL Instruction Error (STW1.11) ON
 Set Table Overflow Error (STW200 = 5)

ON

OFF

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: MOVE

206 CTI 2500 Series CPU Programming Reference Manual V1.33

A: DSP5

 22

LOAD ADDRESS

SI:

LDA

DI:

TD: V65

LDA Example 1:

Load address DSP5 to V65

Source Address (DSP5)

is resolved as follows:

Mem Type = 10H

Word Offset = 000004H

Destination is specified as

Word Address V65.

After LDA completes,

V65 = 1000H

V66 = 0004H

BB[0]: V65

0 1 0 0 0 0 0 0 1000 0 1 0 1 BB[1]: V66

Destination Address (BB) = Word Address V65

00H

00H 04H

10H

0 1 0 0 0 0 0 0 1000 0 1 0 1

Source Address (A) = DSP5

MSB Offset1 = 00

Offset 2 = 00 LSB Offset3 = 04

Mem Type = 10H

Indirect Address @K20 resolves as WX41

A: @K20

 23

LOAD ADDRESS

SI:

LDA

DI: TCC12

TD: V105

LDA Example 2:

Source Address is an Indirect

Address (@K20).

In this example, the Long Word

starting at K20 contains the

Logical Address WX41 as shown.

Destination is specified as Word

Address V105. Destination Index

is set by the value of TCC12.

Here, TCC12 = 4.

Therefore, Destination Address is

calculated as Word Offset 4 in

Table starting at V105.

Destination Address = V109

0 1 0 0 0 0 0 0 1000 0 1 0 1

Source Address (A) = Indirect Address @K20

MSB Offset1 = 00

Offset 2 = 00 LSB Offset3 = 28H

Mem Type = 09 A[0]: K20

A[1]: K21

BB[0]: V105

0 1 0 0 0 0 0 0 1000 0 1 0 1 BB[1]: V106

Destination Address (BB) = Word Address V105 + Offset 4

BB[2]: V107

0 1 0 0 0 0 0 0 1000 0 1 0 1 BB[3]: V108

BB[4]: V109

0 1 0 0 0 0 0 0 1000 0 1 0 1 BB[5]: V110

00H

00H 28H

09H

CTI 2500 Series CPU Programming Reference Manual V1.33 207

 Time Set (TSET)

The TSET instruction sets the controller real-time clock (RTC) to the specified time. The RTC data is
reported in Status Words STW141-144 and STW223-225.

TSET
OutputInput

TM: Starting Address for 3-Word

Memory Block holding Time

data to be written to RTC (V, W)

OS#

TIME SET

OS#: One-Shot Reference No

See Notes

Description of Operation

When the Input transitions OFF-to-ON, the TSET instruction executes as follows:

1. The Memory Block designated in Time (TM) field contains the values to be written the RTC.

 Word Address (TM) - BCD value 0000-0023 interpreted as Hours

 Word Address (TM+1) – BCD value 0000-0059 interpreted as Minutes

 Word Address (TM+2) - BCD value 0000-0059 interpreted as Seconds

2. If any values are outside the valid range, the TSET operation is aborted. The RTC is not
written, and the Output turns OFF.

3. Otherwise, the Hours, Minutes, and Seconds specified in (TM) are written to RTC.
 The Output turns ON for exactly one PLC scan.

4. Status Words STW141-144 and STW223-225 are not updated until the RLL scan completes.
The new time is reported on the next scan.

When the Input does not transition OFF-to-ON, TSET does not execute and the Output turns OFF.

208 CTI 2500 Series CPU Programming Reference Manual V1.33

Input Function Output

OFF TSET instruction does not execute OFF

OFF-to-ON
transition

TSET instruction executes as follows:

IF (Time values in (TM) Memory Block valid)
 Hours, Minutes, Seconds written to RTC

ELSE (One or more (TM) values invalid)
 RTC not written

ON

OFF

ON IF (Input was ON previous scan) OFF

Note:

The Reference Number assigned to the Time Set (TSET) instruction must be unique among
all instructions entered in the PLC program that utilize One-Shot Memory.

 Do NOT use the same Reference Number more than once for any of the following instructions:
TSET, DSET, OS (Transition Contact)

The number of available One-Shot instructions is dependent on the amount of One-Shot Memory
assigned in PLC Memory Configuration.

Each instruction uses one byte of One-Shot Memory.

 Related instructions: TCMP, DSET, DCMP

CTI 2500 Series CPU Programming Reference Manual V1.33 209

 Time Compare (TCMP)

The TCMP instruction compares time (Hours, Minutes, and Seconds) reported by the real-time clock
(RTC) to values in designated memory locations.

TCMP
OutputInput

TM: Starting Address for 3-Word

Memory Block holding Time data

to be compared to RTC (V, W)

REF#

TIME COMPARE

REF# Instruction Reference Number

(0-32767) - see Notes

LT: Bit Address indicating TM < RTC

GT: Bit Address indicating TM > RTC

Any Writeable Bit Addr

(Y, C, B) or Blank

Description of Operation

The TCMP instruction executes each scan Input is ON as described below:

1. The Memory Block (three consecutive words) designated in Time (TM) field contains the values
to be compared to the current time in the RTC.

 Word Address (TM): BCD value 0000-0023 interpreted as ‘Hours’
 Value of 00FF (Hex) excludes ‘Hours’ from comparison

 Word Address (TM+1): BCD value 0000-0059 interpreted as ‘Minutes’
 Value of 00FF (Hex) excludes ‘Minutes’ from comparison

 Word Address (TM+2): BCD value 0000-0059 interpreted as ‘Seconds’
 Value of 00FF (Hex) excludes ‘Seconds’ from comparison

2. If any values specified in (TM) field are outside the valid range, the TCMP operation is aborted.
The TCMP Output and Bit Addresses (LT) and (GT) turn OFF.

3. If the time values specified in (TM) memory block match RTC Time, the TCMP Output turns ON
and Bit Addresses (LT) and (GT) turn OFF.

4. If the time values specified in (TM) memory block is less than RTC Time, Bit Address (LT) turns
ON. The TCMP Output and Bit Address (GT) turn OFF.

5. If the time values specified in (TM) memory block is greater than RTC Time, Bit Address (GT)
turns ON. The TCMP Output and Bit Address (LT) turn OFF

When the Input is OFF, TCMP does not execute. The Output, (LT), and (GT) all turn OFF.

210 CTI 2500 Series CPU Programming Reference Manual V1.33

Input Function GT LT Output

OFF TCMP instruction does not execute OFF OFF OFF

ON

TCMP instruction executes as follows:

IF (Time values in (TM) Memory Block valid)
 IF (Hours, Minutes, Seconds not excluded)
 Value compared to corresponding RTC value

 IF (Specified (TM) values == RTC)

 ELSE IF (Specified (TM) values > RTC)

 ELSE IF (Specified (TM) values < RTC)

ELSE (One or more Time values in (TM) invalid)
 TCMP operation aborted

OFF

ON

OFF

OFF

OFF

OFF

ON

OFF

ON

OFF

OFF

OFF

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: TSET, DSET, DCMP

CTI 2500 Series CPU Programming Reference Manual V1.33 211

 Date Set (DSET)

The DSET instruction sets the controller real-time clock (RTC) to the specified date. The RTC data is
reported in Status Words STW141-144 and STW223-225.

DSET
OutputInput

DT: Starting Address for 4-Word

Memory Block holding Date

data to be written to RTC (V, W)

OS#

DATE SET

OS#: One-Shot Reference No

See Notes

Description of Operation

When the Input transitions OFF-to-ON, the DSET instruction executes as follows:

1. The Memory Block (four consecutive words) designated in Date (DT) field contains the values
to be written the RTC.

1. Word Address (DT): BCD value 0000-0036 interpreted as Year.
 These values correspond to Year 2000 thru 2036.

2. Word Address (DT+1): BCD value 0001-0012 interpreted as Month

3. Word Address (DT+2): BCD value 0001-0031 interpreted as Day of Month

4. Word Address (DT+3): BCD value 0001-0007 interpreted as Day of Week
 ‘Day of Week’ value of 0001 corresponds to “Sunday”.

2. Additional validity checks are performed on (DT) values:

 The Year must be within the operating range of the controller. The default startup date is
January 1, 2000 (01-01-00). The largest date currently handled by the controller is
December 31, 2036 (12-31-36). If Year is specified outside the range of 0000 thru 0036,
the DSET instruction will set the date to the default startup date.

 The Day of Month value must be valid for specified Month and Year. For example, a
date of April 31 or September 31 is considered invalid. It is also an error to specify a date
of February 29, 2010 (any year not corresponding to a leap year).

 The Day of Week value must be designated within the range of 0001 thru 0007.
However, this value is actually overwritten by the RTC when it converts the specified date
to an actual calendar. The ‘Day of Week’ reported in Status Word STW144 is the value
computed by the RTC and does not correspond to the ‘Day of Week’ contents included in
(DT) field.

3. If (DT) values are outside the valid range (except for Year as described above), the DSET
operation is aborted. The RTC is not written, and the Output turns OFF.

212 CTI 2500 Series CPU Programming Reference Manual V1.33

4. Otherwise, the Year, Month, and Day of Month specified in (DT) are written to RTC.

The Output turns ON for exactly one PLC scan.

5. Status Words STW141-144 and STW223-225 are not updated until the RLL scan completes.
The new time is reported on the next scan.

6. The Input must transition OFF-to-ON for the DSET instruction to execute again.

When the Input is OFF, DSET does not execute and the Output turns OFF.

Input Function Output

OFF DSET instruction does not execute OFF

OFF-to-ON
transition

DSET instruction executes as follows:

IF (Date values in (DT) Memory Block valid)

 IF (2000 <= RTC_Year <= 2036)
 DT values for Year, Month, Day of Month written to RTC
 ELSE
 Default Startup Date (January 1, 2000) written to RTC

ELSE (One or more (DT) values invalid)
 RTC not written

ON

ON

OFF

ON IF (Input was ON previous scan) OFF

Note:

The Reference Number assigned to the Date Set (DSET) instruction must be unique among

all instructions entered in the PLC program that utilize One-Shot Memory.

 Do NOT use the same Reference Number more than once for any of the following instructions:
TSET, DSET, OS (Transition Contact)

The number of available One-Shot instructions is dependent on the amount of One-Shot Memory
assigned in PLC Memory Configuration.

Each instruction uses one byte of One-Shot Memory.

 Related instructions: TSET, TCMP, DCMP

CTI 2500 Series CPU Programming Reference Manual V1.33 213

 Date Compare (DCMP)

The DCMP instruction compares date (Year, Month, Day of Month, and Day of Week) reported by the
real-time clock (RTC) to values in designated memory locations.

Description of Operation

The DCMP instruction executes each scan Input is ON as described below:

1. The Memory Block designated in Date (DT) field contains the values to be compared to the
current date in the RTC.

 Word Address (DT): BCD value 0000-0099 interpreted as Year
(DCMP instruction treats Year as 2000 + BCD value)

 Value of 00FF (Hex) excludes Year from comparison

Note: The controller currently limits Year set in the RTC to the range of 2000 thru 2036.
Therefore, the BCD value specified in (DT) must be in the range of 0000-0036 in order to
match the Year reported by the RTC.

 Word Address (DT+1): BCD value 0001-0012 interpreted as Month
 Value of 00FF (Hex) excludes Month from comparison

 Word Address (DT+2): BCD value 0001-0031 interpreted as Day of Month (DoM)
 Value of 00FF (Hex) excludes DoM from comparison

 Word Address (DT+3): BCD value 0001-0007 interpreted as Day of Week (DoW)
 Value of 00FF (Hex) excludes DoW from comparison

When the Input is OFF, DCMP does not execute, and the Output turns OFF.

214 CTI 2500 Series CPU Programming Reference Manual V1.33

Input Function Output

OFF DCMP instruction does not execute OFF

ON

DCMP instruction executes as follows:

IF (Date values in (DT) Memory Block are valid)
 IF (Year, Month, Day of Month, Day of Week not excluded)
 Value compared to corresponding RTC value

 IF (Specified (DT) values = RTC ‘Date’)

ELSE (One or more Date values in (DT) invalid)
 DCMP operation aborted

ON

OFF

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: TSET, TCMP, DSET

CTI 2500 Series CPU Programming Reference Manual V1.33 215

 Immediate I/O Read/Write (IORW)

The IORW instruction performs an Immediate Input (Read Data) or Immediate Output (Write Data)
operation on the group of designated I/O points. Immediate I/O operations can be executed on discrete or
word I/O located in a single module located in the local I/O base or single Profibus-DP slave station.

IORW
OutputInput

POINTS: Number of I/O points to be

transferred - Constant (1-64)

REF#

IMMEDIATE I/O READ/WRITE

ST: Starting I/O Address

(X, Y, WX, WY)

REF# Instruction Reference Number

(0-32767) - see Notes

Starting address for

Discrete I/O (X/Y) must

be on 8-point boundary

(i.e., X1, Y9, X73, etc.)

Immediate I/O Read/Write (IORW) Requirements

Immediate I/O operations execute only when the following conditions are met:

 The Starting I/O Address (ST) designates an I/O address in the discrete image register (X/Y) or
word image register (WX/WY). This I/O address must be configured in the local I/O base or
Profibus-DP I/O network. In addition, the starting address for discrete I/O (X/Y) transfer must be
specified on an 8-point boundary (i.e., X1, Y17, X57, Y65, etc.).

 The POINTS field specifies the size of the data block (up to 64 points) to be transferred during
the I/O operation. When accessing discrete I/O (X/Y), the number of points must be entered as
a multiple of 8 (i.e., 8, 16, 24, etc.) For word I/O (WX/WY) data, the value of POINTS
designates the number of words to transfer in the range of 1-64.

 The direction of data transfer is determined by the I/O Address (ST). A “Read Data” operation
from the I/O module into the appropriate input image register is executed when (ST) is specified
as a discrete input (i.e., X17) or word input (i.e., WX21) address. A “Write Data” operation is
performed when (ST) is designated as a discrete output (i.e., Y41) or word output (i.e., WY68)
address.

 The entire data block specified by Starting I/O Address (ST) and Number of I/O (POINTS) must
be contained in a single I/O module or single Profibus-DP slave.

 The IORW operation is supported by all 2500 Series and Simatic® Series 505 I/O modules
except for Special Function (SF) modules. The referenced module must be located in the local
I/O base (Base 0).

216 CTI 2500 Series CPU Programming Reference Manual V1.33

Description of Operation

The IORW instruction executes each scan the Input is ON.

1. The IORW operation interrupts the RLL scan to execute.

2. The Starting I/O Address (ST) determines the module location and direction of data transfer.
Number of I/O points to transfer specified by value in POINTS field.

3. If the module is not present or designated I/O points are not contained within the I/O
configuration for a module in the local base or Profibus-DP slave:

 For Read operation, the specified points in the input image register are set to zero.

 For Write operation, the operation aborts and points in the output image register are not
copied to the module.

 The Output turns OFF.

4. Otherwise, IORW transfers data to/from the I/O module.

 When Input I/O Address (X or WX) is specified, the current state of the specified number
of points (POINTS) is read from the module and copied into the corresponding input
image register.

 When Output I/O Address (Y or WY) is specified, the current state of the specified
number of points is copied from the corresponding output image register and written to
the module.

 The Output turns ON.

WARNING:

Use caution when placing an IORW instruction within a MCR Zone of Control.
When an Immediate I/O Write operation is specified for discrete outputs, the current state of the Y

points in the output image register are written to the module.
 The specified points are not zeroed by the MCR before the Immediate Write operation is executed.

This could result in damage to equipment and/or serious injury to personnel.

In order for the IORW discrete outputs to be controlled by the MCR, the designated points in the
output image register must set by coils within the MCR Zone of Control.

CTI 2500 Series CPU Programming Reference Manual V1.33 217

Input Function Output

OFF IORW instruction does not execute OFF

ON

IORW instruction executes as follows:

Direction of data transfer (Read/Write), I/O Points, and module location
determined by (ST) and (POINTS).

Performs immediate data transfer to/from I/O module.

IF (Module present in Local Base or Profibus-DP Slave
 and I/O Points configured within single module)

 IF (Input I/O Address)
 Copy specified I/O Points from module into input image register
 ELSE (Output I/O Address)
 Copy specified I/O Points from output image register to module

ELSE (Module not present or I/O Points not configured in one module)

 IF (Input I/O Address)
 Specified I/O Points in input image register set to 0
 ELSE (Output I/O Address)
 Operation aborted. I/O Points not copied to module.

ON

ON

OFF

OFF

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

Related instructions: Immediate Contacts, Immediate Coils

218 CTI 2500 Series CPU Programming Reference Manual V1.33

 Read Slave Diagnostic (RSD)

The RSD instruction transfers the diagnostic data buffer from a Profibus-DP slave station into the
designated PLC memory area. This operation allows diagnostic information from a particular DP-Slave
device to be saved for later analysis and debug of the Profibus-DP network.

RSD
OutputInput

N: Max Length in Words of

data to be stored (1-256)

STN#

READ SLAVE DIAGNOSTIC

A: Starting Word Address where

Diagnostic Data is stored

STN# Profibus-DP Station Number

(1-112) - see Notes

Any Writeable Word Addr:

WY, V, TCC, TCP,

DSC, DSP, DCC, W

Profibus-DP Diagnostic Overview

Profibus-DP specifications allow the slave stations to report alarm and/or error conditions by reporting
a “diagnostic” during the I/O transfer sequence with the DP-Master. The event trigger, data length,
and contents of the diagnostic message is station-specific.

Each slave only maintains one (the last) diagnostic message. If more than one diagnostic condition is
signaled by the same slave before it is read, the older message(s) will be lost.

When a diagnostic is signaled by a DP-Slave, the controller indicates that diagnostic data is available
from a specific station via Status Words STW232-238. Each bit in these Status Words corresponds to
one station number. When the bit is ON, that station has diagnostic data that has not yet been read
by the RSD instruction. The bit is OFF when no new diagnostic data is available.

In order to read and store diagnostic data for a particular slave, use the appropriate bit for the input
contact to the RSD instruction that corresponds to the specified STN# so that it will execute when the
diagnostic is detected.

Diagnostic Data Buffer (A) Format

Word Position Byte Contents

1
0 (MSB)

Diagnostic Status:
 0 = Operation successful
 1 = Operation successful, but previous diagnostic data
 from this station was signaled and not read
 2 = No diagnostic data available. Operation failed.

1 (LSB) Diagnostic Length in Bytes – (Hex)

2 thru N All Diagnostic Data (see RSD Example)

CTI 2500 Series CPU Programming Reference Manual V1.33 219

Description of Operation

The RSD instruction executes each scan Input is ON as described below:

The controller reads diagnostic data from the Profibus-DP I/O Subsystem for the specified DP-
Slave (STN#) and returns results based on the station diagnostic status:

1. If diagnostic data is available for STN#, the DIAGNOSTIC LENGTH Byte (LSB of Word Address
(A)) is set to the total length in bytes of diagnostic data received from the slave, and the
diagnostic data is copied into the memory table starting at Word Address (A+1).

 If the referenced slave has signaled exactly one diagnostic since the previous RSD
instruction for that STN# was executed, the DIAGNOSTIC STATUS Byte is set to 0.

 If the slave has issued more than one diagnostic since the previous RSD instruction for
that STN# was executed, the DIAGNOSTIC STATUS is set to 1.

Note: If the length of data storage specified in (N) is less than the actual diagnostic data
transferred from the slave, the diagnostic data is truncated during the transfer.

2. If diagnostic data is not available for the designated DP-Slave, the DIAGNOSTIC STATUS is set
equal to 2 and the Diagnostic Length is set to 0. The remaining diagnostic data words are
unchanged.

Diagnostic data is not available if the Profibus network is in Stop Mode or the station has not
signaled a diagnostic since the last execution of a RSD instruction with this STN#.

3. The appropriate bit in Status Words STW232-STW238 indicating a pending diagnostic
message for the referenced STN# is turned OFF.

4. The Output turns ON.

If the Input is OFF, the RSD Instruction does not execute and the Output turns OFF.

Input Function Output

OFF RSD instruction does not execute OFF

ON

RSD instruction executes as follows:

DP-Slave (STN#) diagnostic data is requested.
IF (Diagnostic Data is available)

 IF (One diagnostic signaled since Diagnostic Data last read)
 Set ‘Diagnostic Status Byte’ = 0

 ELSE (Multiple diagnostics since Diagnostic Data last read)
 Set ‘Diagnostic Status Byte’ = 1

 Set ‘Diagnostic Length Byte’ = Diagnostic Size (in bytes)
 Copy Diagnostic Data to memory table starting at
 Word Address (N+1) MSB.

ELSE (Diagnostic Data is not available)
 Set ‘Diagnostic Status Byte’ = 2
 Set ‘Diagnostic Length’ = 0

ON

220 CTI 2500 Series CPU Programming Reference Manual V1.33

3RSD

A: V90

N: 4

C11STW232.14

RSD Example:

When DP-Slave 3 signal diagnostic (indicated by STW232 Bit 14) = ON, the RSD instruction

runs and copies diagnostic data into memory table starting at V90. Maximum length of

diagnostic data saved is 6 bytes (3 words) starting at V91. The first word of the diagnostic

buffer (V90) is used for status information.

A[0]: V90

0 1 0 0 0 0 0 0 1000 0 1 0 1 A[1]: V91

Diag Length = 06H

Byte 1 = 02H Byte 2 = 04H

Diag Status = 00

A[2]: V92

0 1 0 0 0 0 0 0 1000 0 1 0 1 A[3]: V93

Byte 4 = 12H

Byte 5 = A7H Byte 6 = 03H

Byte 3 = 00H

Slave 3 Diagnostic Data (in Hex):

02 04 00 12 A7 03

Notes:

1) The Profibus-DP Station Number referenced by the RSD instruction box should be set to an address
supported by the Profibus-DP I/O Subsystem (slave address: 1-112). A Station Number can be
repeated in other RSD instruction boxes as needed.

2) The data length and content included in diagnostic data is proprietary for each DP-Slave device.
Reference the product user manual for a description of the diagnostic data.

3) Each installed slave signals a diagnostic immediately after the DP-Master downloads its slave
configuration. These diagnostic data messages are reported to the CPU. Therefore, it is normal for the
Diagnostic Status bits (in STW232-STW238) corresponding to all configured slave stations to be set
ON each time the Profibus Operation Mode is changed to RUN. This occurs automatically following a
program download to the PLC.

 The RSD instruction must be executed once for each STN# in order to clear the corresponding
Diagnostic Status bit (in STW232-STW238) to zero.

CTI 2500 Series CPU Programming Reference Manual V1.33 221

 Text Box (TEXT)

The TEXT box is used to insert textual data such as program description or copyright information into the
PLC program. The TEXT box is saved as a single RLL network and performs no action. The sole purpose
of this instruction is for documentation

TEXT REF#

TEXT Data Field:

Consists of 5 Lines of Text

Each line holds up to 40 characters.

REF# Instruction Reference Number

(0-32767) - see Notes

TEXT data can consist of up to 5 lines of 40 characters each.
All printable ASCII characters in the range of 20H thru 60H may be entered.
This includes A-Z, 0-9, punctuation, and printable special characters.

TEXT 1

FEEDER B CONTROL PROGRAM

PLC NO. 6R

VERSION 2.11

DATE: 10/05/2006

COPYRIGHT (C) 2006 XYZ LTD.

Text Box Example:

Note:

The Reference Number assigned to the instruction box (Constant: 0-32767) is used only for
documentation purposes. The number entered can be repeated as needed.

222 CTI 2500 Series CPU Programming Reference Manual V1.33

 No Operation (NOP)

The NOP instruction is used as a placeholder for a RLL network.

NOP

The NOP instruction requires no parameters and performs no action.

CTI 2500 Series CPU Programming Reference Manual V1.33 223

224 CTI 2500 Series CPU Programming Reference Manual V1.33

CHAPTER 4 SF PROGRAMS AND SUBROUTINES

4.1 Overview

Special Function (SF) Programs and Subroutines provide a statement–oriented procedural programming
language much like BASIC. Using SF Programs and Subroutines, you can develop process control
applications that would be difficult or impossible to implement in RLL. This is particularly useful for
performing complex mathematical calculations and IF-THEN-ELSE logic expressions.

SF Program execution can be initiated from the RLL program, Loops, or Analog Alarms. In addition, SF
Subroutines can be called from an SF Program or another SF Subroutine.

Up to 1023 SF Programs and 1023 SF Subroutines can be defined. The actual number supported in the
controller is dependent on the CPU model.

SF Programs and SF Subroutines are stored in S memory. The S memory size must be adjusted as
required to accommodate your program storage requirement.

To maximize performance, all enabled SF Programs and Subroutines are compiled. Compiling takes
place when the SF program or subroutine is downloaded or edited (if enabled) or when execution status
is changed to enabled, if it has been modified.

4.2 SF Program/Subroutine Execution

 SF Programs

When the SF Program is created, you designate how it is to be executed by selecting the ‘Program Type’
(NORMAL, PRIORITY, CYCLIC, or RESTRICTED).

All Series 2500™ Processors support In-Line execution of SF Programs. This feature allows all NORMAL
and PRIORITY SF Programs to run as part of the RLL scan, and results are immediately available for use
by other RLL instructions.

The temporary variable (T2) indicates how the SF Program was called.

4.2.1.1 Normal / Priority SF Programs

Normal and Priority program types are general-purpose SF Programs that can be called for execution
from any source (RLL, Loops, or Alarms). These program types are identical except when run using the
Deferred Execution method described later in this section.

When called from a Loop or Analog Alarm, Normal and Priority SF Programs execute exactly like
Restricted SF Programs described in Section 3.2.2.3

Normal and Priority SF Programs may also be initiated from the RLL using the SFPGM instruction. The
execution method then depends on whether the program is designated for In-Line Execution or Deferred
Execution.

CTI 2500 Series CPU Programming Reference Manual V1.33 225

In-Line Execution

If In-Line Execution is selected, the program will be executed immediately as part of the RLL network.
Each SF Program called for In-Line Execution will run to completion, and the results are available for use
by the next RLL instruction.

The primary disadvantage of In-Line Execution is the discrete scan time is extended by the amount of
time required to execute the program(s) called during the PLC scan. However, this effect is minimized
due to the processing speed achieved by running compiled code and the use of the hardware floating
point unit (FPU). Most SF Programs will execute in much less than 1 millisecond.

In-Line Execution is selected by setting the ‘In-Line’ attribute in the SFPGM instruction. The program is
executed each scan when the SFPGM input is TRUE. When the program completes execution, the output
of the SFPGM box will turn ON. If an error condition is detected, the program will not execute, the output
of the SFPGM instruction box will turn OFF and one of the following errors will be displayed in STW200.

Error Code Error Description

8 SF Program is does not exist

9 SF Program is not enabled

10 SF Program type is not Normal or Priority

11 An Edit operation is in progress

Deferred Execution

If the In-Line Execution attribute is not set in the SFPGM instruction, the SF program will be queued to
execute in the time slice corresponding to the program type. Depending on the program characteristics,
time slice intervals, and the number of programs that are queued, it may require multiple scans to
complete execution of the program.

Normal SF Programs and Priority SF Programs selected for Deferred Execution are placed in the
appropriate queue when the input transitions from FALSE to TRUE. When the program completes
execution, the output of the SFPGM instruction box turns ON. The input to the SFPGM box must
transition from TRUE to FALSE before the SFPGM instruction will execute again.

The advantage of this method is that it allows the user to precisely control the amount of time used during
each PLC scan for SF Program execution. Normal SF Programs and Priority SF Programs execute in
separate time slices as specified in the PLC Scan configuration. Queued programs of each program type
are executed until the time slice expires or the corresponding queue is empty.

Note:
The SFPGM box input must remain TRUE until the program completes execution. If the input goes

FALSE before the program begins execution, it will be removed from the execution queue.

For additional details regarding the RLL SFPGM instruction, see Section 3.11.12.

226 CTI 2500 Series CPU Programming Reference Manual V1.33

4.2.1.2 Cyclic SF Programs

SF Programs designated as CYCLIC type run on the time interval specified in the program header. Cyclic
SF Programs must be initiated from the RLL SFPGM instruction with the ‘In-Line’ attribute turned off.

Note:

 Cyclic programs are queued for execution during the Cyclic SF Program time slice.
An error is returned you attempt to execute them using the SFPGM instruction with the

 In-Line attribute set.

Cyclic SF Programs are initially scheduled when the SFPGM box input transitions to TRUE. Thereafter,
they are automatically re-scheduled for execution on the specified time interval as long as the input to the
SFPGM instruction stays TRUE. The output of the SFPGM box turns ON after the first successful
execution and remains ON as long as the input is TRUE. When the input goes FALSE, the Cyclic SF
Program is removed from the queue.

Note:

The operation of Cyclic SF Programs in the CTI 2500 Series PLC differs slightly
 from the SIMATIC® 505 controller as described below:

CTI 2500 Series PLC: Cyclic SF Programs are removed from the execution queue

immediately when the SFPGM box input transitions from TRUE-to-FALSE.

SIMATIC® 505 controller: Cyclic SF Programs are removed from the queue immediately
after the SF Program is executed if the SFPGM box input is FALSE. Therefore, if the input

transitions TRUE-to-FALSE during the wait period being execution cycles, the SFPGM
will run one additional time before it is removed from the queue.

Cyclic SF Programs execute in a separate time slice as specified in the PLC Scan configuration. Each
scan all scheduled Cyclic SF Programs are executed until the time slice expires or the queue is empty.

CTI 2500 Series CPU Programming Reference Manual V1.33 227

4.2.1.3 Restricted SF Programs

Loops and/or Alarms can be programmed to execute an SF Program in order to perform special
processing on data variables. SF Programs assigned the program type of Restricted can only be
executed when called by a Loop or Alarm.

Restricted SF Programs execute within the time slice of the calling Loop or Alarm. This capability allows
you to customize the operation of the Loop or Alarm by performing calculations before certain parameters
are used by the function.

SF Programs called by Alarms

SF Programs called by Alarms are called at the Alarm Sample Rate. The program is executed after the
Alarm Process Variable has been read but before it has been evaluated for an alarm condition. SF Local
Variable T2=4 when called by Analog Alarm.

SF Programs called by a Loop execute at different times based on the SF Spec Calc setting (None, PV,
SP, Output) specified in the Loop Configuration. Some settings provide multi-function operation as
described below;

SF Programs Called on Setpoint

This selection causes the designated SF Program to be executed only when the Loop is in Auto or
Cascade mode. The SF Program is then called at the Loop Sample Rate with SF Local Variable T2=2.

SF Programs Called on Process Variable

The designated SF Program is called in all Loop modes: Manual, Auto, or Cascade.

In Manual mode, the SF Program is called at the Loop Sample Rate for alarm monitoring purposes. In
Auto (or Cascade) mode, the SF Program is called immediately before the Loop algorithm executes. In
addition, the SF Program is also called for alarm monitoring at 2 second intervals as long as the time to
the next scheduled Loop execution is greater than or equal to 2 seconds.

For instance, when the Loop Sample Rate is set to 3 seconds, the SF Program is called only when the
Loop executes (because at the 2-second mark, the next Loop execution time is less than 2 seconds in the
future). However, if the Loop Sample Rate is set to 6 seconds, the SF Program is called an additional 2
times during each Loop execution cycle – for alarm monitoring at 2-second and 4-second marks (because
next Loop execution time is 2 seconds in the future).

The SF variable T2=2 when the SF Program runs immediately before the Loop algorithm executes. When
SF Program is called for alarm monitoring purposes, this case is indicated by T2=3.

Note:

SF Programs called on Setpoint access or Process Variable access execute after the
Setpoint (SP) and Process Variable (PV) have been read into the internal Loop variables.

This allows modification of either value before the Loop algorithm executes.

228 CTI 2500 Series CPU Programming Reference Manual V1.33

SF Programs Called on Loop Output

The designated SF Program is called in all Loop modes: Manual, Auto, or Cascade.

In Manual mode, the SF Program is called at the Loop Sample Rate for alarm monitoring purposes.

In Auto (or Cascade) mode, the SF Program is executed twice during each Loop algorithm calculation -
immediately before and after the Loop algorithm executes. In addition, the SF Program is also called for
alarm monitoring at 2 second intervals as long as the time to the next scheduled Loop execution is
greater than or equal to 2 seconds.

For instance, when the Loop Sample Rate is set to 3 seconds, the SF Program is called only before/after
the Loop algorithm calculation (because at the 2-second mark, the next Loop execution time is less than
2 seconds in the future). However, if the Loop Sample Rate is set to 6 seconds, the SF Program is called
an additional 2 times during each Loop execution cycle – for alarm monitoring at 2-second and 4-second
marks (because next Loop execution time is at least 2 seconds in the future).

The SF variable T2=2 when the SF Program runs immediately before the Loop algorithm executes, and
T2=5 when the SF Program is called immediately after the Loop calculation.

When SF Program is called for alarm monitoring purposes, this case is indicated by T2=3.

Note:

A SF Program called on ‘Output’ is called twice each time the Loop calculation executes.
The SFP is called the first time after Setpoint (SP) and Process Variable (PV) have been
read into the internal Loop variables which allows modification of either value before the

Loop algorithm executes.

The SFP is then called again after the Loop calculation has completed and the
Control Variable (Output) has been written into the internal Loop variable (LMNx).

This allows modification of Output value before data is written to the field Output channel.

CTI 2500 Series CPU Programming Reference Manual V1.33 229

 SF Subroutines

SF Subroutines allow you to construct modular programs by creating re-useable sections of code using
the BASIC-like SF instruction set. SF Subroutines can be called from RLL using the SFSUB box
instruction, from an SF Program, or from another SF Subroutine (via the CALL instruction). When the SF
Subroutine completes execution, it returns control to the program that called it.

4.2.2.1 SF Subroutines Called from RLL

SF Subroutines (1-1023) called from RLL execute in the following manner:

 If the IN-LINE EXECUTION attribute is not set, the referenced SF Subroutine is queued for execution
in the Ladder SFSUB time slice when the SFSUB instruction input transitions from FALSE to
TRUE. The SFSUB box output will turn ON when the SFSUB successfully completes execution.
The output remains ON until the input goes FALSE.

 If IN-LINE EXECUTION is selected, the SF Subroutine is immediately executed each scan the input
to the SFSUB instruction box is TRUE. If an Edit operation is in progress when the SFSUB
instruction executes, the output is turned OFF and error code 11 is written to STW200. If the SF
Subroutine does not exist or is disabled, an error is displayed in the SFSUB instruction’s ERROR

STATUS ADDRESS.

For additional details regarding the RLL SFSUB instruction, see Section 0.

4.2.2.2 SF Subroutines Called from SF Programs/Subroutines

SF Subroutines called by SF Programs or other SF Subroutines using the CALL instruction are executed
as follows:

1. Control is transferred to the designated SF Subroutine, and it immediately begins to run. Upon
completion, control returns to the calling SF Program/Subroutine and continues execution with
the statement following the CALL instruction.

2. If the SF Subroutine does not exist or not enabled, an error code is written to the corresponding
Error Status Address and the subroutine is not executed. Program action is based on ERROR

RESPONSE selected for the calling SF Program/Subroutine as described in Section 4.3.

A detailed description of the CALL instruction is provided in Section 4.5.5.

230 CTI 2500 Series CPU Programming Reference Manual V1.33

4.2.2.3 SF Subroutine Password Protection

Note:

This feature is available only when using 2500 Series CPU firmware V6.0 or later
and 505 WorkShop V4.50 or later as PLC programming software.

The SF Subroutine password protection feature permits users and integrators to create programs that
contain methods or calculations that are considered critical and/or private intellectual property without
revealing the actual program instructions or allowing any edits to be performed.

The programmer has the option of setting password protection for each existing SF Subroutine. Once a
password is entered for a particular SF Subroutine, it is designated as “protected” and can be viewed or
modified only when the correct password is entered. Once a password has been successfully entered for
a particular SF Subroutine, that program shall remain unprotected as long as the PLC Program (.FSS) file
is open within 505 WorkShop. It is possible to “unprotect” multiple SF Subroutines at the same time.

Valid passwords can contain up to 16 characters including (A-Z, a-z, 0-9, and <space> character. There
is no restriction on password usage so the same password may be used for all SF Subroutines if desired,
or a different password may be established for each program.

There are two methods of importing password-protected SF Subroutines into new or existing WorkShop
PLC Program files:

1. COPY / PASTE SF Subroutine(s) from one .FSS file to another.

2. Use EXPORT facility to create “Workshop Special Function” (.WSP) files that can then be brought
into a different PLC Program using the IMPORT function.

Both of these techniques can be completed without knowing the password. However, all SF Subroutines
produced in this manner will also be designated as “protected” and have the identical password in the
new PLC Program file as in the original file.

CTI 2500 Series CPU Programming Reference Manual V1.33 231

 Editing of SF Programs during Run Mode

The CTI 2500 Series PLC execute compiled language versions of all SF Programs and SF Subroutines.
Because compiled languages are converted directly into machine code, they run significantly faster and
more efficiently than interpreted languages used in the SIMATIC® 505 controllers.

However, the use of the compiled language requires that each SF Program be converted (or compiled)
before it can be executed. The converter (or “compiler”) requires a very strict syntax to ensure the
program is translated correctly. This syntax requirement can generate errors when converting existing SF
Programs that ran successfully in interpretive mode on SIMATIC® 505 controllers.

When a PLC program is downloaded to the CTI 2500 Series PLC, all SF Programs are compiled as they
are received. Compiler errors are reported as immediately during the download procedure. The affected
SF Program is disabled and will not execute until the error is corrected. Most compiler errors are
associated with mismatched pairs of “IF” and “ENDIF” statements.

The CTI 2500 Series PLC allows on-line editing of SF Programs while the PLC program is executed.
However, this procedure must be done carefully to avoid “disabling” the SF Program and/or creating
computational errors during the editing process. Because the entire SF Program is converted (or
“recompiled”) after each SF statement is entered, it is easy to create invalid program segments and/or
incomplete computations.

As a general rule, we recommend that the SF Program be manually disabled to editing. This allows the
user to add, delete, modify, and verify all SF statements before they are executed. If the edit includes the
addition or deletion of SF statements (or lines), it is highly recommended that the SF Program be disabled
to prevent compiler and/or computational errors.

If the edit involves the addition and/or deletion of SF statements listed below, the SF Program must be
disabled to prevent a compilation error:

 IF / IIF / ELSE / ENDIF

 WHILE / ENDWHILE

 FOR / NEXT

 SWITCH / ENDSWITCH

 CASE / BREAK / DEFAULT (if not within an existing SWITCH / ENDSWITCH segment)

The SF Program is always disabled while it is being compiled, and the compilation always occurs during
the “Normal Communication” time slice of the PLC scan. The time required to compile and store the SF
Program depends on the program size and the total of amount of S-Memory used for storage of SF
Programs It is certainly possible that the SF Program will be disabled for one or more PLC scans while
the program is being compiled.

WARNING:

Take care when editing SF Programs or SF Subroutine via the Online Edit function. All SF
Programs are compiled immediately after each statement is entered. Any compilation error will

result in setting the SF Program state to “disabled” and prevent execution until the error is
corrected. Any edits that involve the addition of multi-statement computations must be done in a

manner to prevent an incomplete result from being used by the controller. This could cause
damage to equipment and/or serious injury to personnel.

232 CTI 2500 Series CPU Programming Reference Manual V1.33

If it is imperative that an SF Program be edited on-line while PLC is running and that change be
incorporated into the SF Program so that it is never disabled during a PLC scan, the “Normal
Communication” time slice should be set to a very large value (50 – 60 msec) to allow sufficient time to
complete the compile operation during a single scan. This can still result in a significant increase in the
PLC scan time (for that one scan), but it will allow the SF Program edit to be completed in one scan cycle.

Note:

The SF Program edit procedure in the CTI 2500 Series PLC differs slightly from the SIMATIC® 505
controllers when running in “Variable with Limit” scan mode. In the SIMATIC® 505 controller, it is only

required to set the ‘’Scan Limit’ (maximum scan time) to a value large enough to complete SF edit
operation. When using the CTI 2500 Series PLC, both the ‘Scan Limit’ and ‘Normal Communication’

values must be set large enough to complete the SF edit operation during a single scan.

4.3 Special Function Error Reporting and Response

The CPU Operating System continually monitors the operation of SF instructions while executing and
reports errors as specified by the user. This allows the controller to detect and react to run-time errors
without generating a PLC fault or Fatal Error condition.

The run-time monitoring detects events such as illegal operations (i.e., divide by 0), invalid memory
access (i.e., unconfigured address or attempting to write to a ‘read-only memory location), or variable
overflow (i.e., assigning an ‘out-of-range’ value to a variable).

Error response is specified through the following fields:

 SF Programs: ERROR STATUS ADDRESS in SF Program Header
 CONTINUE ON ERROR (YES/NO) in SF Program Header

 SF Subroutines: ER: field in SFSUB instruction box
 STOP ON ERROR / CONTINUE ON ERROR in SFSUB instruction box

Error Reporting using Bit Address

When a Control Relay (C) or Discrete Output (Y) bit address is entered, the specified bit is set ON if an
error is detected. Otherwise, the bit is set OFF. No other error report is made.

Error Reporting using Word Address

When a word memory (V, WY) address is entered, a 3-word memory block is allocated to provide detailed
error reporting. The address entered is used as the first word (Word1) of the memory block.

This 3-word memory block is formatted as follows:

0 00 0

0 0

Word1

Word2

Word3

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bit

Control Block
Type

0 0 0 Error Code

Control Block Number

SF Program/Subroutine Statement Number

0

CTI 2500 Series CPU Programming Reference Manual V1.33 233

The reason for the error is provided in the Error Code written to the least significant byte of Word1.
Section 4.7 contains a description of the possible Error Codes.

The Control Block ID for the task that declared the error is written to Word2.

1. Bits 3-6 indicate one of the following Control Block Types:

 0000: PID Loop
 0001: Analog Alarm
 0002: SF Program
 0003: SF Subroutine

2. Bits 7-16 hold the SF Program/Subroutine Number (1-1023)

Word3 indicates the Statement Number of the SF Program or SF Subroutine executing when the error
was detected.

The Error Code value (in Word1) is reset to zero each time the control block starts execution. However,
values in Words2-3 are left unchanged until manually cleared to allow debug of intermittent error
conditions.

Error Reporting using SFEC Variable

The Special Function Error Code (SFEC) variable provides another means of accessing the Error Code
associated with a SF Program/Subroutine. The SFEC variable contains the same information as Word1 of
the Word Address Memory Block described above.

The SFEC variable may be read or written in a SF Program/Subroutine statement. This allows the user to
programmatically detect and respond to errors or declare unique error codes when desired.

Note:

The programming software may require that a number be entered as part of the SFEC variable
when used in a SF Program/Subroutine (i.e., SFEC1). However, the number entered has no

 effect on the operation. All references to the SFEC variable made within an SF Program/Subroutine refer
to the Error Code associated with that one program.

When the SF Program/Subroutine is called for execution, the SFEC value is cleared to zero. If the CPU
operating system detects an error, the corresponding Error Code is written to the SFEC. Errors can also
be detected programmatically and assigned to the SFEC using the MATH or IMATH instruction (i.e.,
SFEC1 := 127).

The action taken by the SF Program/Subroutine when a writing to the SFEC variable depends on the
selection made in the CONTINUE ON ERROR (YES/NO) field (in SF Program Header) or STOP ON ERROR /
CONTINUE ON ERROR (for RLL SFSUB instructions).

If STOP ON ERROR is selected, the SF Program/Subroutine terminates immediately when a non-zero value
is written to the SFEC variable. If CONTINUE ON ERROR is chosen, the program continues to execute –
allowing the SF Program/Subroutine to examine the SFEC value and take the necessary corrective
action.

234 CTI 2500 Series CPU Programming Reference Manual V1.33

CAUTION:

Take care when selecting ‘CONTINUE ON ERROR’ for SF Programs//Subroutines.
Operational errors (such as ‘Arithmetic Overflow’ or ‘Invalid Data’) often result in invalid values

being assigned to critical memory locations. This can cause unexpected results in program
calculations and machine operation.

4.4 Special Function Memory Usage

This section describes PLC memory access by SF Programs/Subroutines that differs from the RLL
program instructions.

 SF Program Size

The PLC uses S-Memory to store the source code for each SF Program/ Subroutine. The amount of S-
Memory available is determined by the PLC Memory Configuration for this memory type (see Section
7.2.4).

The maximum size for each SF Program / Subroutine is limited to 32767 bytes. This includes all
operations (one byte each), parameters (one byte for Boolean, two bytes for 16-bit Integer/Word, and four
bytes for Real/Long Integer/Double Word), and comments (each character is one byte).

Any program that exceeds this limit will generate a “Control Block Size Error” when attempting to
download it to the PLC.

 SF Local Memory

A block of memory (called temporary or T-memory) is allocated for duration of the program execution. T-
Memory is analogous to “local variables” used in C program functions. This memory can be accessed
only by the SF Program / Subroutine currently executing and is cleared when the program terminates.

Note:

The amount of T-memory available to SF programs has been extended to 64 words, and
this memory block can be accessed as T1-T64. All addresses in this extended memory

SF Program/Subroutine starts executing.

This feature is available only when using 2500 Series CPU firmware V6.0 or later and
505 WorkShop V4.50 or later as the PLC programming software.

CTI 2500 Series CPU Programming Reference Manual V1.33 235

The T-memory block is 16 words in length (accessed via T1-T16). The PLC operating system uses a
portion of this memory to pass information to the program as shown in the following table.

T-Mem Address Value Usage

T1 1-1023 SF Program/Subroutine Number

T2 1 Called from RLL
 2 Scheduled on Loop Setpoint
 3 Scheduled on Loop Process Variable
 4 Scheduled on Analog Alarm

 5 Scheduled on Loop Output

T3 0
1-512

Not called by Loop or Alarm
Number of Loop or Alarm that called the SF Program

T4-T5 Real
Number

Sample Rate of calling Loop or Alarm, or Cycle Time
if designated as Cyclic SF Program. If called
elsewhere, T4-T5 = 0

T6 0
1

Indicates normal operation
Indicates ‘Overrun Condition’. Set when calling Loop
or Alarm, or SF Program (if designated Cyclic) has
overrun.

T7 0
1

‘First Run’ Flag is not set
If called from Loop or Alarm or designated as Cyclic
SF Program, T7 = 1 for the first instance the SF
Program is called after a program startup, Program-
to-Run transition, or Loop Mode change (Manual-to
Auto or Auto-to-Manual). Otherwise, T7 = 0.

T8-T16
(T8-T64)**
See Note above

0 Contains no PLC operational data.
Can be used during program execution for
intermediate data storage.

All words of T-memory can be used by all SF Programs/Subroutines as “local variables”. Information
written by the controller into words T1-T7 can be read (when needed) then overwritten by user data
during program execution. The remaining words are “static” variables always set to 0 when the program is
called.

The T-memory addresses are contiguous and can be used to store 32-bit values exactly as done in V-
memory. For instance, T9-T10 can store a 32-bit floating point number referenced as (T9.).

236 CTI 2500 Series CPU Programming Reference Manual V1.33

 Memory Array Indexing

SF Programs/Subroutines allow memory addresses and SF Variables to be accessed by the use of word
and element indices to denote one-dimensional arrays. The first element in the array is referenced by
index of “1” (i.e., V101(1) ≡ V101).

1. Word Indexing is represented by the expression X(n) to designate an array of n words starting at
memory address X. The DATA TYPE (Integer, Unsigned Integer, Long Integer, or Real Number) is
specified for the base address and also applies to the indexed address. Examples are shown
below:

 V5(1)≡ V5 V5.(3)≡ V7. V5U(2)≡ V6U

 V1(5)≡ V5 V1U(8)≡ V8U V1L(25)≡ V25L

 V100(10)≡ V109 V100L(4)≡ V103L V100.(12)≡ V111.

2. Element Indexing is represented by the expression X(:n:) to designate an array of n elements
starting at memory address X. The actual address selected by the expression depends on the
DATA TYPE (Integer, Unsigned Integer, Long Integer, or Real Number) specified for the base
address.

Note:

ELEMENT INDEXING has been enhanced to include ‘bit’ indexing when used with the new
WORD.BIT DATA TYPE element address. This provides access to multiple bits within a specified

memory word address by using the expression X.y(:n:) where:
X = word offset, y = start bit position, and n = indexed bit position 1-16.

An “Address Out of Range” error will result if the referenced bit position is outside the
valid range (1-16).

For instance, different bits in word V20 can be accessed via address expression
V20.1(:T10:) by setting the value of variable T10 to specify bit position 1-16.

See other examples below.

This feature is available only when using 2500 Series CPU firmware V6.0 or later and
505 WorkShop V4.50 or later as the PLC programming software.

 Examples are shown below:

 V5(:1:)≡ V5 V5.(:3:)≡ V9. V5U(:2:)≡ V6U

 V1(:5:)≡ V5 V1U(:8:)≡ V8U V1L(:25:)≡ V49L

 V100(:10:)≡ V109 V100L(4)≡ V106L V100.(:12:)≡ V123.

 Bit Element Indexing (see Note above):

 V14.1(:10:)≡ V14.10 WX33.9(:4:)≡ WX33.12

 T5=5 WY9.1(:T5:)≡ WY9.5

 P1=4 T10.1(:P1:)≡ T10.4

CTI 2500 Series CPU Programming Reference Manual V1.33 237

3. SF Variable Indexing allows Loop/Alarm Variables to be accessed via an array index. When

using these variables, Word Indexing should be used.

 LPV5(1)≡ LPV5 ATS5.(3)≡ ATS7.

 LSP1(6)≡ LSP6 ASP10.(2)≡ ASP11.

 LTI6.(3)≡ LTI8. AHA20(4)≡ AHA23

4. SF Subroutine instructions can access memory address parameters passed by the CALL
instruction (P1, P2 … P5) via an array index. The actual address selected depends on the rules
for Word Indexing and Element Indexing described above. See examples below:

 P1 = V10 (Int) P1(3)≡ P1(:3:) = V10(3)≡ V12

 P2 = V20.(Real) P2.(5) = V20.(5)≡ V24.

 P2.(:5:) = V20(:5:)≡ V28.

CAUTION

Take care when using index values < 1. An index value of “0” actually references
the memory location immediately preceding the base address (i.e., V100(0) ≡ V99).
It is also valid to use negative indices, and the referenced address is based on the

 magnitude of the index (i.e. V100(-1) ≡ V98 and V100(-5) ≡ V94).

 However, an “Address out of Range” error is generated if the referenced address
Is outside the configured memory range. For instance, statements containing
addresses V1(0) or V5(-4) will not execute since the array positions reference

an invalid memory address of V0.

238 CTI 2500 Series CPU Programming Reference Manual V1.33

4.5 Special Function Instructions

Each SF Program/Subroutine is made up of a set of Special Function instructions that execute
sequentially starting at Line 1 unless altered by one or more “control flow” instructions. Each program line
(or statement) contains one of the following instructions:

Operation
Type

Instruction Description Section

Data
Conversion

BCDBIN BCD-to-Binary Conversion 4.5.3

BINBCD Binary-to-BCD Conversion 4.5.4

SCALE Converts Integer to Engineering Units 4.5.22

UNSCALE Converts Engineering Units to Integer 4.5.26

Documentation * Comment 4.5.2

Math

IMATH Integer Math computations 4.5.12

LEAD/LAG Analog Variable Filtering algorithm 4.5.13

MATH
Integer and Real Number Math
computations

4.5.14

Control Flow

CALL Calls SF Subroutine 4.5.5

EXIT Exit on Error 4.5.7

FOR / NEXT Conditional Looping 4.5.9

GO TO / LABEL Unconditional Branching 4.5.10

IF / ELSE / ENDIF Conditional Branching 4.5.11

IIF / ELSE / ENDIF Conditional Branching 4.5.11

PETWD Pet Scan Watchdog 4.5.19

RETURN Terminates SF Program/Subroutine 4.5.21

SWITCH / CASE /
ENDSWITCH

Conditional Branching 4.5.24

WHILE / ENDWHILE Conditional Looping 4.5.27

Printing PRINT Print Functions 4.5.20

Table Handling

CDT Correlated Data Table 4.5.6

FTSR-IN Fall Through Shift Register - Input 4.5.8

FTSR-OUT Fall Through Shift Register - Output 4.5.8

PACK Packs Data to/from Table 4.5.15

PACKAA
Pack Analog Alarm Data to/from
Table

4.5.16

PACKLOOP Pack Loop Data to/from Table 4.5.17

PACKRS Pack Ramp/Soak Data to/from Table 4.5.18

SDT Sequential Data Table 4.5.23

SSR Synchronous Shift Register 4.5.25

CTI 2500 Series CPU Programming Reference Manual V1.33 239

 SF Instruction Data Fields

Each SF instruction includes one or more data fields for entry of user data. Each data field must include a
Data Field Type in accordance with the permitted FIELD DESCRIPTION for each data field.

Note:

The DATA FIELD TYPE element has been enhanced to allow WORD.BIT (X.y) addresses
(i.e., V12.3, T9.1, or WX1.13) to be used as ‘bit’ elements in following SF instructions:

MATH, IMATH, IF, IIF, FOR/NEXT, WHILE, SWITCH, and SSR.

Additional, T-memory WORD.BIT addresses (i.e., T9.1) can be used as the STATUS BIT for
SDT, FTSR-IN, FTSR-OUT, and SSR instructions.

 This feature is available only when using 2500 Series CPU firmware V6.0 or later and
505 WorkShop V4.50 or later as the PLC programming software.

The following table lists the possible DATA FIELD TYPES and FIELD DESCRIPTIONS used by SF instructions.

Data Field Type

Address Element

Consists of Data Type (Memory Type or SF Variable) and Reference
Number. A period following the element designates a Real Number (i.e.,
V146. or LMN12.). No period (default) specifies the element be
accessed as an Integer (i.e., ALA5 or V42).

A specific bit within a word can be accessed using the Word.Bit (X.y)
syntax where X = Element Address and y = Bit Number (1-16).
**See Note above.

Address
Expression

Group of symbols (constants, elements, and operators) evaluated to
produce a single Address Element as described above.
A ‘U’ suffix specifies an address of an Unsigned Integer (i.e., K62U or
V348U). An ‘L’ suffix specifies an address of a Long (32-bit) Signed
Integer (i.e., V101L or K199L).
See Section 4.4.3 for a description of Memory Array Indexing.

V200(5)
V151(T2 + 2)
V466.(:T10:)

evaluates to V204
if T2=3, evaluates to V155
if T10=5, evaluates to V474.

Value Constant Integer or Real Number (i.e., 255 or 1256.98)

Value
Expression

Group of symbols (constants, elements, operators) evaluated to
produce a single Value as described above.

(LMN2. * 100)
(V25 + K12 * 2)
V200U := 65000 / V18

evaluates to Real Number
evaluates to Integer
evaluates to Unsigned Integer

240 CTI 2500 Series CPU Programming Reference Manual V1.33

Data Field Description

Integer Only

Only Integer values, expressions evaluating to an Integer value, or an
Address that designates an Integer (i.e., V75) may be entered in this field.
Special Unsigned (U) and Long (L) Integer types are accepted.

Real Only

Only Real Number values, expressions referencing a Real Number value,
or an Address that designates a Real Number (i.e., V121.) may be
entered in this field.

Integer/Real
Integer, Real Numbers, and all Address types may be entered in this
field.

Bit Only
Only Addresses for discrete memory types (X/Y, C) may be entered in
this field.

Writeable Address

Only Addresses for writeable memory types may be entered in this field.
Read-only memory types (STW, K, WX, TCC, X) are not accepted.
Note: TCC is considered a ‘read-only’ memory type for SF Programs and
SF Subroutines.

Optional Entry in this field is optional and can be left blank.

CTI 2500 Series CPU Programming Reference Manual V1.33 241

 Comment (*)

A Comment statement can be inserted into a SF Program or SF Subroutine for documentation purposes.
The asterisk (*) symbol is used to insert a comment.

* THIS IS AN EXAMPLE OF THE COMMENT STATEMENT

Description of Usage

1. Each Comment occupies a line in the SF Program/Subroutine.

2. The Comment statement is free-form ASCII field that may any printable ASCII characters. All
alpha characters (A-Z) are converted to upper-case.

3. The Comment field can hold a maximum of 1021 characters.

4. The Comment statement uses S-Memory for storage. There is no limit in the number of
comments allowed as long as sufficient S-Memory has been configured.

5. The Comment statement is ignored during program execution.

0001 * THIS SFPGM CALCULATES CURRENT FLOW RATE INTO TANK-A

0002 * V175-V176 HOLDS TOTAL PRODUCT INTO TANK SINCE LAST CALCULATION

0003 * V284 HOLDS TIME INTERVAL IN SECONDS

0004 * FLOW RATE RESULT (LPS) WRITTEN TO V301-V302 (AS REAL NUMBER)

0005 MATH V301. := V175L / V284

COMMENT Example:

242 CTI 2500 Series CPU Programming Reference Manual V1.33

 BCD-to-Binary Conversion (BCDBIN)

The BCDBIN instruction converts a 4-digit Binary Coded Decimal (BCD) value into its equivalent 16-bit
binary representation.

BCDBIN BCD INPUT: BINARY RESULT:

BCD INPUT: Address of BCD value to be converted (Integer Only)

BINARY RESULT: Address of Integer in Binary format (Integer - Writeable Addr)

Description of Operation

Each time the BCDBIN instruction is called:

5. The BCD value (four BCD digits) of the BCD INPUT element is converted to the equivalent binary
representation and written to BINARY RESULT element.

6. If any 4-bit segment in the BCD INPUT does not represent a valid BCD digit, the BCD-to-Binary
conversion is aborted. The BINARY RESULT is unchanged and an error is reported.

WX17:

V152: 0 1 1 11 1 0 0 1

Integer Value = 6385

0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

836 5

11 1 101 1

BCDBIN Example: BCD INPUT: WX17 BINARY RESULT: V152

CTI 2500 Series CPU Programming Reference Manual V1.33 243

 Binary-to-BCD Conversion (BINBCD)

The BINBCD instruction converts the Binary representation of a 16-bit Integer value into its equivalent
BCD value.

BINBCD BINARY INPUT: BCD RESULT:

BINARY INPUT: Address of Binary value to be converted (Integer Only)

BCD RESULT: Address of Integer in BCD format (Integer - Writeable Address)

Description of Operation

Each time the BINBCD instruction is called:

 The Integer value of the BINARY INPUT element is converted to the equivalent BCD representation
and written to BCD RESULT element.

 If the BINARY INPUT contains a value less than 0 or greater than +9999, the Binary-to-BCD
conversion is aborted. The BCD RESULT is unchanged and an error is reported.

BINBCD Example: BINARY INPUT: V268 BCD RESULT:WY50

Integer Value = 8349

V268: 0 0 0 10 0 1 0 10 1 0 0 0 1 1

438 9

WY50: 1 0 0 01 0 0 00 0 0 1 1 0 1 1

244 CTI 2500 Series CPU Programming Reference Manual V1.33

 Call SF Subroutine (CALL)

Note:

This instruction has been enhanced to increase the number of parameters that may be
passed to the specified SF Subroutine from 5 to 10. The SF Subroutine can access

these parameters via addresses P1-P10.

This feature is available only when using 2500 Series CPU firmware V6.0 or later and
505 WorkShop V4.50 or later as the PLC programming software.

The CALL instruction calls an SFSUB for immediate execution. When inserted, the CALL instruction is
displayed showing five (5) parameters. This parameter list may be extended to specify up to ten (10)
parameters using the “Add CFUNC/SFSUB Parameter” function under the “Program” selection in the
WorkShop main toolbar.

CALL SFSUB: P1:

P2: P3:

P4: P5:

SFSUB: SFSUB Number to be executed (Integer Constant 1-1023)

P1 - P5: Optional Parameter Fields (Address or Value - Integer/Real)

Description of Operation

Each time the CALL instruction is called:

 The parameter fields (P1-P5) are evaluated. Parameters are optional and should be left blank if
unused. If fewer than five parameters are required, they must be entered in order starting at P1
(i.e., do not skip any parameter fields).

 Control jumps to the SF Subroutine program number specified in SFSUB. Parameter values
(passed as P1-P5) are read by the SFSUB before starting execution at Line 1. When completed,
control transfers back to the SF program that called the SFSUB. Execution continues at the line
following the CALL instruction.

Specifying Real / Integer Parameters

Parameters can be specified as an address (Address Element or Address Expression) or value (Constant
or Value Expression). Parameter fields can reference Real numbers or Integer types as described in SF
Instruction Data Fields Section 4.5.1.

It is very important that parameter data types are used by the called SFSUB as intended. The easiest way
to accomplish this is to always specify the parameter data type in the appropriate fields (P1-P5) of the
CALL instruction, and then use the parameters in the SFSUB without a data type reference. In this case,
the CPU uses each parameter according to the data type designated in the CALL instruction.

If an SFSUB expression references a parameter as a “Real” data type (I.e., P1.), the parameter value is
forced to a Real number regardless of the data type passed. In some cases, this results in an unexpected
operation. For instance, a parameter passed as an Integer Address Value (P1 = V250) is referenced in
the SFSUB statement as Real number (P1.). This causes the controller to access the values at V250-
V251 as a Real Number instead of converting the value at V250 from Integer to Real.

CTI 2500 Series CPU Programming Reference Manual V1.33 245

The following table describes use of parameter data types.

Data Type specified in CALL
Instruction Parameter Fields

Parameter Reference
in SF Subroutine

Data Type used in
SFSUB calculation

Real (ex: V250.) Pn Real

Real (ex. V250.) Pn. Real

Signed Integer (ex. V250) Pn Signed Integer

Unsigned Integer (ex: V250U) Pn Unsigned Integer

Long Integer (ex: V250L) Pn Long Integer

Integer (V275) Pn. Real (not converted)

Operational Notes

1. SF Subroutines always start executing a Line 1 and continue until all statements are completed or
until an EXIT instruction is encountered.

2. Action taken when an error condition is detected in SF Subroutine initiated via a CALL instruction
is determined by the selection (STOP ON ERROR or CONTINUE ON ERROR) made for the SFPGM or
RLL SFSUB that called the SF Subroutine.

3. SF Subroutines can be nested to four levels. Attempting to execute a CALL instruction that
exceeds this limit results in an error condition that terminates all nested SF programs. This action
cannot be overridden by a CONTINUE ON ERROR selection.

4. If any parameter not specified in the CALL instruction is used by the SF Subroutine, the
parameter is assigned a value of zero and an error condition is generated. SFSUB operation is
then determined by the action designated by STOP ON ERROR or CONTINUE ON ERROR.

5. References to Address Parameters within SF Subroutines can include Memory Array Indexing
(i.e. P1(5) or P2(P3)) as described in Section 4.4.3.

246 CTI 2500 Series CPU Programming Reference Manual V1.33

 Correlated Data Table (CDT)

The CDT instruction compares the value of an Input element to a Table of values and finds the first value
in the Table that is greater than or equal to the Input. The value in the corresponding (or correlated)
position in the Output Table is then written to the specified Output address.

CDT INPUT: OUTPUT:

INPUT TABLE: OUTPUT TABLE:

TABLE LENGTH:

INPUT: Address of value to be compared to Input Table (Integer/Real)

OUTPUT: Address where Output is written (Integer/Real - Writeable Addr)

INPUT TABLE: Start Address of Input Table (V, K) (Integer/Real)

OUTPUT TABLE: Start Address of Output Table (V, K) (Integer/Real)

TABLE LENGTH: Number of elements in Input/Output Tables

(Address or Value - Integer Only)

Setup

The following must be configured before the CDT instruction is called:

 The INPUT TABLE values must be in ascending order so that the lowest value is placed in the
starting memory location (INPUT TABLE address) and the highest value is placed in the last
memory location included in the Table.

 The OUTPUT TABLE must be setup so that each position holds a value that corresponds to the
same position in the INPUT TABLE. The OUTPUT TABLE entry specifies the starting address of this
Table.

 The number and size of elements in the INPUT TABLE and OUTPUT TABLE must be identical (as
specified by TABLE LENGTH). If the INPUT TABLE contains 32-bit (Long Integer or Real Number)
values, the OUTPUT TABLE must also hold 32-bit values. The TABLE LENGTH field specifies the
number of Table entries – not necessarily the number of words used.

Description of Operation

Each time the CDT instruction is called:

 The value of the INPUT element is compared to a pre-existing Table of values as specified by
start address (INPUT TABLE) and length (TABLE LENGTH).

 The position in the INPUT TABLE holding the first value greater than or equal to the INPUT is
identified. The corresponding value in that same position in the OUTPUT TABLE is then written to
the OUTPUT.

 If the INPUT value is greater than all values in the INPUT TABLE, the OUTPUT is unchanged.

CTI 2500 Series CPU Programming Reference Manual V1.33 247

 CDT Example:

 CDT INPUT: WX34 OUTPUT: V205

INPUT TABLE: V210 OUTPUT TABLE: V220

TABLE LENGTH: 6

 Input: WX34 = 19348

Input Table Output Table

V210 = 6400 V220 = 30975

V211 = 11520 V221 = 26800

V212 = 16640 V222 = 24912

V213 = 23045 V223 = 17920

V214 = 27904 V224 = 11776

V215 = 32000 V225 = 32000

 Output: V205 = 17920

248 CTI 2500 Series CPU Programming Reference Manual V1.33

 Exit on Error (EXIT)

The EXIT instruction forces termination of an SF Program or SF Subroutine and writes the user-specified
Error Code to the ERROR STATUS ADDRESS.

EXIT ERRCODE:

ERRCODE: Value to be written to ERROR STATUS ADDRESS

(Integer Constant 0-255)

Description of Operation

Each time the EXIT instruction is encountered:

1. Program termination occurs as follows:

a. If an SF Program is being executed, it is immediately terminated.

b. If the SF Subroutine being executed was called from an RLL SFSUB box, that SF
Subroutine is terminated.

c. If the SF Subroutine being executed was called via an SF CALL instruction, execution of
that SF Subroutine and all “nested” SF Programs/Subroutines are terminated.

2. The ERRCODE value is written to the ERROR STATUS ADDRESS designated in the SF Program
Header (for SF Program that called the SFSUB) or RLL SFSUB instruction ER field. The
ERRCODE can be specified as an Integer in the range of 0-255. However, we recommend using
values in the range of 100-255 since 0-99 are already used by the CPU to designate SF errors.
See Section xx.

3. If a bit address is used for the ERROR STATUS ADDRESS, it turns ON.

CTI 2500 Series CPU Programming Reference Manual V1.33 249

 Fall Through Shift Register (FTSR-IN / FTSR-OUT)

The Fall Through Shift Register (FTSR) operates as an asynchronous First In – First Out (FIFO) shift
register. Each element in the shift register is a 16-bit word, and the storage length is user-specified.

The FTSR operation is controlled by the combination of the FTSR-In and FTSR-Out instructions that
move data into and out of the shift register as described below.

FTSR-IN

The FTSR-IN instruction is used to load a word into the shift register.

FTSR-IN INPUT: REGISTER START:

REGISTER LEN: STATUS BIT:

INPUT: Address of value to be moved into FTSR (Integer)

REGISTER START: FTSR Start Address (Integer - Writeable Address)

REGISTER LEN: Address or Value (Integer Only)

STATUS BIT: Start Address for FTSR Status (C, Y, Tx.y **)

(Uses two consecutive bit locations)

** See Note in Section 3.5.1

FTSR-OUT

The FTSR-OUT instruction is used to unload a word from the shift register.

FTSR-OUT REGISTER START: OUTPUT:

REGISTER LEN: STATUS BIT:

REGISTER START: FTSR Start Address (Integer - Writeable Address)

OUTPUT: Address of value moved out of FTSR (Integer)

REGISTER LEN: Address or Value (Integer Only)

STATUS BIT: Start Address for FTSR Status (C, Y, Tx.y **)

(Uses two consecutive bit locations)

** See Note in Section 3.5.1

250 CTI 2500 Series CPU Programming Reference Manual V1.33

FTSR Configuration

1. Both FTSR-IN and FTSR-OUT instructions must be used to control a single shift register. Both
instructions must reference identical values for REGISTER START, REGISTER LENGTH, and STATUS

BIT.

2. INPUT field specifies address holding value to be shifted into the FTSR.

3. REGISTER START designates the starting address for the memory block acting as the FTSR. The
first four (4) words of this memory block are used for shift register operational registers.

4. OUTPUT FIELD is the address to which data shifted out of the FTSR is moved.

5. REGISTER LENGTH specifies the number of words managed by the shift register (from 1 - 32767
words). Actual size of the FTSR memory block is (REGISTER LENGTH + 4).

6. STATUS BIT designates first of two consecutive bits (C, Y, Tx.y) used for shift register status.

 STATUS BIT is ‘FIFO Full’ indication (ON = Shift Register Full)

 (STATUS BIT+1) is ‘FIFO Empty’ indication (ON = Shift Register Empty)

FTSR Operation

1. When the shift register is empty, STATUS BIT = OFF and (STATUS BIT + 1) = ON.
 This state is automatically set when an FTSR instruction is first executed following a CPU power-

on restart or whenever the ‘FTSR CheckCode’ is invalid.

2. The FTSR-IN instruction must execute first to load data into the shift register.

3. Each time FTSR-IN executes, the following actions occur:

 If ‘CheckCode’ value (in REGISTER START+3) is invalid, the shift register is reset to ‘FIFO
Empty’ state. (STATUS BIT+1) Is turned ON. Operation continues.

 If FIFO is full (STATUS BIT = ON), operation is terminated.
 SF Error 87 (Attempt to load data when FIFO Full) is generated.
 FTSR-OUT must be used to unload data from FIFO before FTSR-In can run again.

 The value in address specified as INPUT is loaded into the shift register.

 The FIFO ‘Count’ and ‘Index’ increment by 1.
 If “FIFO Empty’ (STATUS BIT+1) = ON, it is turned OFF.
 If Count = REGISTER LENGTH, ‘FIFO Full’ (STATUS BIT) is turned ON.

4. The FTSR-OUT instruction can be used to unload data any time one or more words are loaded in
the FIFO (i.e., ‘FIFO Empty’ = OFF). There is no requirement to fill the FIFO before running
FTSR-OUT to unload data.

5. Each time FTSR-OUT executes, the following actions occur:

 If ‘CheckCode’ value (in REGISTER START+3) is invalid, the shift register is reset to ‘FIFO
Empty’ state. (STATUS BIT+1) Is turned ON.

 If FIFO is empty (STATUS BIT+1 = ON), operation is terminated and OUTPUT is
unchanged. SF Error 86 (Attempt to unload data when FIFO Empty) is generated.

 FTSR-IN must be executed to load data into FIFO before FTSR-OUT can run again.

 The oldest (first-in) data in the shift register is unloaded into the address specified in
OUTPUT field.

 The FIFO ‘Count’ is decremented by 1.
 If “FIFO Full’ (STATUS BIT) = ON, it is turned OFF.
 If Count = 0, ‘FIFO Empty’ (STATUS BIT+1) is turned ON.

CTI 2500 Series CPU Programming Reference Manual V1.33 251

 FTSR Example:

 FTSR-IN INPUT: V125 REGISTER START: V81

 REG LENGTH: 3 STATUS BIT: C48

 FTSR-OUT REGISTER START: V81 OUTPUT: V127

 REG LENGTH: 3 STATUS BIT: C48

 INPUT (V125)

Count 0 V81

Index 0 V82 STATUS:

Length 3 V83 FIFO Full (C48) = OFF

CheckCode xxxx V84 FIFO Empty (C49) = ON

FIFO Pos0 V85

FIFO Pos1 V86

FIFO Pos2 V87

 OUTPUT (V127)

FTSR State when FTSR is reset to ‘FIFO Empty’ State.

FTSR is reset whenever CheckCode is invalid when FTSR-IN/OUT starts execution.

‘Count’ = Number of entries in FIFO.

‘Index’ = Number of FIFO Pos where next entry is loaded.

‘Length’ = Max entries in FIFO

 INPUT (V125)

 9613

Count 1 V81

Index 1 V82 STATUS:

Length 3 V83 FIFO Full (C48) = OFF

CheckCode xxxx V84 FIFO Empty (C49) = OFF

FIFO Pos0 9613 V85

FIFO Pos1 V86

FIFO Pos2 V87

 OUTPUT (V127)

FTSR-IN instruction executes and loads first entry into FIFO.

FTSR state after FTSR-IN instruction runs:

252 CTI 2500 Series CPU Programming Reference Manual V1.33

FTSR-OUT instruction executes and unloads data from FIFO.

Note “FIFO Empty’ bit indicates empty shift register.

FTSR state after FTSR-OUT instruction runs:

 INPUT (V125)

Count 0 V81

Index 1 V82 STATUS:

Length 3 V83 FIFO Full (C48) = OFF

CheckCode xxxx V84 FIFO Empty (C49) = ON

FIFO Pos0 9613 V85

FIFO Pos1 V86

FIFO Pos2 V87

 9613

 OUTPUT (V127)

 INPUT (V125)

 2584

Count 1 V81

Index 2 V82 STATUS:

Length 3 V83 FIFO Full (C48) = OFF

CheckCode xxxx V84 FIFO Empty (C49) = OFF

FIFO Pos0 9613 V85

FIFO Pos1 2584 V86

FIFO Pos2 V87

 OUTPUT (V127)

FTSR-IN instruction executes and loads new entry into FIFO.

FTSR state after FTSR-IN instruction runs:

 INPUT (V125)

 79

Count 2 V81

Index 0 V82 STATUS:

Length 3 V83 FIFO Full (C48) = OFF

CheckCode xxxx V84 FIFO Empty (C49) = OFF

FIFO Pos0 9613 V85

FIFO Pos1 2584 V86

FIFO Pos2 79 V87

 OUTPUT (V127)

FTSR-IN instruction executes and loads another entry into FIFO.

FTSR state after FTSR-IN instruction runs:

CTI 2500 Series CPU Programming Reference Manual V1.33 253

 INPUT (V125)

 14290

Count 3 V81

Index 1 V82 STATUS:

Length 3 V83 FIFO Full (C48) = ON

CheckCode xxxx V84 FIFO Empty (C49) = OFF

FIFO Pos0 14290 V85

FIFO Pos1 2584 V86

FIFO Pos2 79 V87

 OUTPUT (V127)

FTSR-IN instruction executes again and fills FIFO with third value.

FTSR state after FTSR-IN instruction runs:

FTSR-OUT instruction executes and unloads oldest data from FIFO.

FTSR state after FTSR-OUT instruction runs:

 INPUT (V125)

Count 2 V81

Index 1 V82 STATUS:

Length 3 V83 FIFO Full (C48) = OFF

CheckCode xxxx V84 FIFO Empty (C49) = OFF

FIFO Pos0 14290 V85

FIFO Pos1 2584 V86

FIFO Pos2 79 V87

 2584

 OUTPUT (V127)

254 CTI 2500 Series CPU Programming Reference Manual V1.33

 Conditional Looping - FOR / NEXT

The FOR instruction is used to repetitively execute a group of instructions as long as the specified
condition is TRUE. The NEXT statement serves as end delimiter. There is no limit to the number or type
of SF statements that can be executed within the FOR / NEXT loop.

Note:

This feature is available only when using 2500 Series CPU firmware V6.0 or later
and 505 WorkShop V4.50 or later as PLC programming software.

FOR COUNTER:

INITIAL VALUE:

INCREMENT:

CONDITION:

<< SF instruction >>

…

<< SF Instruction >>

NEXT

COUNTER: Value to be incremented each iteration thru loop (Integer - V,T Addr only)

INITIAL VALUE: Initialization value written to COUNTER (Integer Value or Address)

INCREMENT: Value added to COUNTER each iteration thru loop

(Integer Value or Address)

CONDITION: Expression used to determine when to terminate loop (Integer only)

Configuration of FOR Instruction

1. COUNTER designates an integer-only word address that holds value to be incremented during
execution of the FOR / NEXT loop. A V-Memory (V) or T-Memory (T) word address must be
assigned for the COUNTER value.

2. INITIAL VALUE specifies the value to be written into COUNTER address when FOR instruction is first
called. This field may be entered as integer-only constant, word address, or expression.

3. INCREMENT specifies the value that is added to the COUNTER address during each iteration of the
FOR / NEXT loop. COUNTER can be decremented by entering negative INCREMENT value. This
field may be entered as integer-only constant, word address, or expression.

4. CONDITION identifies the expression that is evaluated before each iteration of the FOR / NEXT
loop. This expression may include any of the Integer Math (IMATH) Operations shown in Section
4.5.12.

Additional Requirements

 A separate NEXT instruction is required for each FOR instruction that is entered.

 FOR / NEXT loops may be “nested” within other FOR / NEXT loops to a maximum of four (4)
levels deep

CTI 2500 Series CPU Programming Reference Manual V1.33 255

FOR / NEXT Operation

1. When FOR instruction is first called, the INITIAL VALUE is written to the COUNTER address. This
action is performed only once for each cycle through the FOR / NEXT loop.

2. The expression specified in CONDITION is evaluated.

 If TRUE, execution continues at the following statement and goes until a NEXT
instruction is encountered.

 If FALSE, the instruction is terminated and execution jumps to statement following NEXT
instruction.

3. When NEXT instruction is found, operation returns to the previous FOR instruction. At that point,
the following occurs:

 The Counter value is incremented by the value specified in Increment field.

 Operation repeats as described in Item 2 above.

When first called, ‘Counter’ is set to ‘Initial Value

(V300=1). ‘Condition’ expression is then

evaluated. Operation continues when TRUE.

When NEXT statement is found, execution returns to FOR

instruction. ‘Counter’ increments by ‘Increment’ value.

‘Condition’ expression is again evaluated. If TRUE,

operation continues. If FALSE, instruction terminates and

execution jumps to instruction following NEXT statement.

Instructions between FOR and NEXT

execute each time thru the loop.

FOR / NEXT Example1:

Sets values V321-V330 to zero

0001 FOR: COUNTER: V300

INITIAL VALUE: 1

INCREMENT: 1

CONDITION: V300 <= 10

0002 IMATH V321(V300) := 0

0003 NEXT

0004 IMATH V350 := 5

256 CTI 2500 Series CPU Programming Reference Manual V1.33

FOR / NEXT Example2:

Uses nested FOR/NEXT loops to “flip” bits in 3 consecutive words.

(Old Word1.Bit1 moved to New Word1.Bit16, Old Word1.Bit2 moved to New Word1.Bit15, etc.

0001 FOR: COUNTER: T20

INITIAL VALUE: 1

INCREMENT: 1

CONDITION: T20 <= 3

0002 IMATH T25 := V1005(T20)

0003 FOR COUNTER: T21

INITIAL VALUE: 16

INCREMENT: -1

CONDITION: T21 > 0

0004 IMATH T26.1(:T21:) := T25.1(:17-T21:)

0005 NEXT

0006 IMATH V1105(T20) := T26

0007 NEXT

0008 RETURN

Description of operation:

0001 The “outer” FOR instruction selects the word for operation using ‘Counter’ variable as index.

0002 The selected word is moved into a temporary address.

0003 The “inner” FOR instruction selects the bit number using ‘Counter’ variable as index.

Note the “Counter’ value is decremented from 16 to 1 (because ‘Increment’ is set to -1.

0004 The designated bit within the selected word is copied to its “flipped” location in a new

temporary address.

0005 End delimiter for “inner” FOR / NEXT loop.

0006 Executes only when “inner” loop has completed all 16 bits of first word.

Moves value of temporary address into final location (using ‘Counter’ variable as index).

0007 End delimiter for “outer” FOR / NEXT loop.

0008 Executes only when “outer” loop has completed all 3 words.

This group of instructions perform the following action:

01 0 0 0 1 1 0 0 1 0 0 1 1 1 0

10 1 0 0 0 0 1 0 1 1 0 1 0 0 0

11 0 1 1 0 0 0 1 0 1 1 0 0 1 1

1 2 4 5 6 7 8 9 103 11 12 13 14 15 16

V1106

V1107

V1105

10 1 1 0 0 1 0 0 1 1 0 0 0 0 1

00 0 1 0 1 1 0 1 0 0 0 0 1 1 0

01 1 0 1 1 0 1 0 0 0 1 1 1 0 1

V1006

V1007

V1005

1 2 4 5 6 7 8 9 103 11 12 13 14 15 16

Primary

“outer” loop

Nested “inner” loop

runs to completion

each pass thru the

“outer” loop

CTI 2500 Series CPU Programming Reference Manual V1.33 257

 Unconditional Branching - GOTO / LABEL

The GOTO and LABEL instructions are used together to transfer program execution to the line number
containing the designated LABEL number.

GOTO LABEL:

<< SF instruction >>

. . .

<< SF instruction >>

LABEL LABEL:

LABEL: SF Statement Identifier (Integer Constant)

Description of Operation

When the GOTO instruction is encountered, execution immediately jumps to the corresponding LABEL
instruction and continues at that point. The LABEL is executed as a < No-Op>.

The LABEL parameter has the following restrictions:

 Each LABEL identifier must be entered as an Unsigned Integer (range = 0-65535).

 Each LABEL identifier must be unique for a given SF Program / SF Subroutine.

 It is permissible to have multiple GOTO instructions with the same LABEL identifier.

GOTO / LABEL Example:

0001 IMATH T1 := 0

0002 LABEL LABEL: 10

0003 IMATH T1 := T1 + 1

0004 IMATH T2 := V55 + T1

0005 IMATH V100 (T1) := T2

0006 IF T1 < 5

0007 GOTO LABEL: 10

0008 ENDIF

CAUTION:

Take care when performing SF Programs//Subroutines Online Edits using GOTO / LABEL
instructions. It is invalid to enter a GOTO instruction without a corresponding LABEL.

This results in a compiler error and the SF Program/Subroutine will be disabled.
 This can cause unexpected results in program calculations and machine operation.

Therefore, always enter the LABEL statement before the corresponding GOTO instruction.

258 CTI 2500 Series CPU Programming Reference Manual V1.33

 Conditional Branching - IF (IIF) / ELSE / ENDIF

The IF, ELSE, and ENDIF instructions are used together to perform conditional branching of program
execution. The IF instruction evaluates any valid arithmetic or logical expression and directs execution
based on TRUE or FALSE result. The IIF (Integer IF) instruction is a special form of IF that can be used
for when evaluating Integer-only expressions.

IF (or IIF) << Arithmetic/Logical Expression >>

 . . .

 << TRUE Code Section >>

 . . .

ELSE

 . . .

<< Optional FALSE Code Section >>

 . . .

ENDIF

<< Arithmetic/Logical Expression>> = Valid MATH or IMATH Expression (IF)

Valid IMATH Expression (IIF)

Definitions and Rules of Usage

 Each IF (or IIF) statement must contain an arithmetic or logical expression using one or more of
the MATH (or IMATH) operators as defined in Section 4.5.12 and 4.5.14. The use of the
ASSIGNMENT operator (:=) is optional.

 The IF statement can include any valid MATH or IMATH expression. The IIF (Integer IF)
statement must contain a valid IMATH expression.

 Each IF (or IIF) statement must have a corresponding ENDIF to indicate the end of the
conditional code section.

 The ELSE instruction is optional and required only when a program section is to be executed only
when the IF statement is FALSE. Only one ELSE statement can be associated with an IF (or IIF)
instruction.

 The “TRUE’ code section consists of all SF instructions between the IF (or IIF) - ELSE statements.
If ELSE does not exist, the “TRUE” section is all SF instructions between IF (or IIF) – ENDIF
statements.

 The optional “FALSE” code section consists of all SF instructions between the ELSE – ENDIF
statements.

 There is no limit to the number of IF (or IIF) – ENDIF sections that can exist within a single
program.

 It is possible to place IF (or IIF) - ENDIF sections within IF (or IIF) - ENDIF sections. This
“nesting” of instructions is allowed to any level.

CTI 2500 Series CPU Programming Reference Manual V1.33 259

Description of Operation

Each time the IF (or IIF) instruction executes:

1. The expression within the statement is evaluated for TRUE or FALSE condition.

 The expression is considered TRUE when the result is non-zero.

 The expression is considered FALSE when the result is zero.

2. If TRUE, all instructions within the “TRUE” section are executed. All instructions in the “FALSE”
section are skipped.

3. If FALSE, the “TRUE” section is skipped, and all instructions within the “FALSE” section are
executed.

Simple IIF - ENDIF Example

0005 IIF V10 > 5

0006 IMATH V50 := 0

0007 MATH V100. := 1.0

0008 ENDIF

TRUE Code Section

executed only when

V10 > 5.

IF - ELSE - ENDIF Example

0012 IF V45 < 1000 AND C26

0013 MATH V125U := V45 * 5

0014 IMATH C33 := 0

0015 ELSE

0016 IMATH C51 := 1

0017 IMATH V125 := V325

0018 ENDIF

FALSE Code Section

executed when

V45>=1000 OR C26=OFF.

TRUE Code Section

executed when

V45<1000 AND C26=ON.

Nested IF - ENDIF Example

0005 IF V100. > 0 AND V100. < 2.54

0006 IMATH C112 := 1

0007 IF V104 > 12600

0008 IMATH C115 := 1

0009 ELSE

0010 IMATH C115 := 0

0011 ENDIF

0012 ELSE

0013 IMATH C112 := 0

0012 ENDIF

Nested

IF-ELSE-ENDIF

Executes when

Top Level

IF = TRUE

Top Level

IF-ELSE-ENDIF

260 CTI 2500 Series CPU Programming Reference Manual V1.33

 Integer Math Operations (IMATH)

The IMATH (Integer Math) instruction executes integer-based arithmetic and logical operations.

IMATH Y := X

Y : Result (Writeable Address - Integer Only)

X: Address Element/Expression or Value Element/Expression

(Integer Only)

Description of Operation

Each time the IMATH instruction executes:

 The operations on the right side of the ASSIGNMENT (:=) operator are performed, and the result is
written into the memory address (Y) entered on the left side of the ASSIGNMENT operator.

 All arithmetic operations are executed using integer math.

Rules of Execution

The IMATH instruction according to the following rules:

 Only integers can be used in IMATH statements. Real numbers are not supported.

 Different integer types can be designated as follows:

o 16-bit signed integer – default (i.e., V148)

o 16-bit unsigned integer - add “U” suffix (i.e., V352U)

o 32-bit signed integer – add “L” suffix (i.e., V2120L)

 Different number formats can be used as follows:

o Decimal – default (i.e., 12)

o Hexadecimal – add “0H” prefix (i.e., 0H7FFE)

o Binary – add “0B” prefix (i.e., 0B11001001)

 Each IMATH instruction must contain a single ASSIGNMENT operator.

 The right side of the ASSIGNMENT operator can contain multiple mathematical expressions made
up of arithmetic and/or logical operations supported by the IMATH instruction.

 Expressions can include Memory Array Indexing as described in Section 4.4.3.

 Computations are executed according the IMATH Order of Precedence as shown in the table in
this section. Operations with the highest precedence are performed first. When functions are
equivalent in precedence, calculations are made from left to right. For example, the expression (A
/ B * C) is calculated first as the quotient of (A / B), and then the result is multiplied by C.

 Parentheses can also be used to force the order in which a computation is performed. Any
expression enclosed by parentheses is executed before the surrounding operations. For
example, the expression (A – B) / C is calculated first as the difference of (A – B), and then the
result is divided by C.

CTI 2500 Series CPU Programming Reference Manual V1.33 261

The following operations are supported in the IMATH instruction:

Arithmetic
Operation

Symbol Description

Absolute Value ABS Returns numerical value of integer without regard to its sign.

Modulo MOD Returns remainder following integer division.

Bitwise NOT
(Complement)

NOT Returns one’s complement of operand based on Logical Negation of
each bit.

Bitwise AND & Computes value based on Logical AND of corresponding bits in each
operand.

Bitwise OR | Computes value based on Logical OR of corresponding bits in each
operand.

Bitwise XOR ^ Performs Logical Exclusive OR on each pair of corresponding bits in
each operand.

Addition + Computes sum

Assignment := Modifies the value of an integer variable

Division / Computes integer quotient, and any remainder is truncated.

Multiplication * Computes product

Shift Left << Result of each arithmetic bit shift is equivalent to multiplying by 2.

Shift Right >> Arithmetic Shift Right where sign of integer is preserved.
Result of each bit shift is equivalent to dividing by 2.
Any remainder is rounded toward negative infinity.

Subtraction - Computes difference

Unary Negation - Returns the negative of its operand

Logical
Operation

Symbol Description

Logical AND AND Returns TRUE (1) if both operands are TRUE (non-zero).
Otherwise it returns FALSE (0)

Logical OR OR Returns TRUE (1) if either operand is non-zero; otherwise FALSE (0).

Equal = Returns TRUE (1) if both operands are equal; otherwise FALSE (0).

Greater Than > Returns TRUE (1) if operands are not equal; otherwise FALSE (0).

Greater Than or
Equal

>= Returns TRUE (1) if first operand is less than the second.
Otherwise it returns FALSE (0).

Less Than < Returns TRUE (1) if first operand is less than or equal to the second.
Otherwise it returns FALSE (0).

Less Than or
Equal

<= Returns TRUE (1) if first operand is greater than the second;
Otherwise it returns FALSE (0).

Not Equal <> Returns TRUE (1) if operands are not equal.
Otherwise it returns FALSE (0).

262 CTI 2500 Series CPU Programming Reference Manual V1.33

The Order of Precedence of IMATH operations is shown in the following table:

Operation Order of Precedence

Absolute Value, Bitwise NOT, Unary Negation 1 (Highest)

Multiplication, Division, Modulo 2

Addition, Subtraction 3

Shift Left, Shift Right 4

Relational Operations (=, <>, <, <=, >, >=) 5

Logical AND, Bitwise AND 6

Logical OR, Bitwise OR, Bitwise XOR 7

Assignment (:=) 8 (Lowest)

Note:

The NOT operator does not perform the same function in IMATH instruction and MATH instruction.
The NOT operation is executed in IMATH as arithmetic Bitwise NOT (or Complement) while it is executed

in MATH as Logical NOT (inverting TRUE/FALSE result).

CTI 2500 Series CPU Programming Reference Manual V1.33 263

 Lead/Lag Compensation (LEAD/LAG)

The LEAD/LAG instruction provides a high-frequency filtering algorithm for an analog variable used in
cyclic processes (PID Loops, Analog Alarms, or Cyclic SF Programs). The LEAD/LAG algorithm
combines the characteristics of Lead compensation to increase stability and control system response
speed with Lag compensation to improve steady-state accuracy.

LEAD/LAG INPUT: OUTPUT:

LEAD TIME (MIN): LAG TIME (MIN):

GAIN (%/%): OLD INPUT:

INPUT: Address of analog value to be processed (Integer/Real)

OUTPUT: Address where result is written (Integer/Real - Writeable)

LEAD TIME: Address or Value of LEAD Time in Minutes (Real Only)

LAG TIME: Address or Value of LAG Time in Minutes (Real Only)

GAIN: Address or Value of LEAD/LAG Filter Gain (Real Only)

OLD INPUT: Address where Input data from previous sample is stored

(Integer/Real - Writeable)

Theory of Operation

1. The LEAD/LAG instruction calculates first-order phase-lead and phase-lag compensation in
order to enhance system response. The algorithm can perform as a Lead compensator or Lag
compensator based on parameter values.

2. The LEAD/LAG OUTPUT is based on the ratio of LEAD TIME / LAG TIME. When this ratio is > 1.0, the
algorithm functions as a Lead compensator to improve transient response similar to Derivative
control. When the ratio is < 1.0, it functions as a Lag Compensator to reduce steady-state error
similar to Integral control. A ratio = 1.0 provides neither Lead nor Lag compensation.

3. The LEAD/LAG filter uses the following algorithm:

TLEAD + TS

TLAG + TS

TLAG

TLAG + TS

TLEAD

TLAG + TS

YN = YN-1 + KC XN - KC XN-1

where:

YN = Current Output , YN-1 = Previous Output

XN = Current Input, XN-1 = Previous Input

TLEAD = Lead Filter Time (in Minutes)

TLAG = Lag Filter Time (in Minutes)

KC = Lead/Lag Compensation GAIN

TS = Sample Time (in Minutes)

4. The SAMPLE TIME for the PID Loop, Analog Alarm, or Cyclic SF Program that called the

LEAD/LAG instruction is used for the (TS) parameter values in the above equation.

264 CTI 2500 Series CPU Programming Reference Manual V1.33

Lead/Lag Filter Configuration

1. The LEAD/LAG filter is calculated on the analog value designated in INPUT field. The INPUT can
be specified as Integer or Real number.

2. The result of the LEAD/LAG filter is written to the address designated in OUTPUT field. The
OUTPUT can be specified as Integer or Real number.

3. LEAD TIME and LAG TIME specify the filter time constants (in Minutes) used in the calculation.

4. GAIN represents the ratio of change in Output to the change in Input at steady-state. The GAIN
must be greater than zero for the LEAD/LAG compensation to be calculated correctly.

5. OLD INPUT specifies the address used by the LEAD/LAG instruction for storage of data from
previous sample. The Data Type (Integer/Real) referenced here should match that used for INPUT
value.

Lead/Lag Filter Operation

1. The first time it executes following a CPU Restart, the LEAD/LAG instruction is initialized and
OUTPUT = INPUT * GAIN. Current Input value is stored in address specified in Old Input.

2. Each subsequent time it is called, the LEAD/LAG filter algorithm computes the OUTPUT based on
current ratio of LEAD TIME / LAG TIME, Lead/Lag Compensation GAIN, current and previous INPUT
values, and SAMPLE TIME.

N=1 2 3 4 5

TLEAD/TLAG = 1.0

Output is immediately set

to a value equal to

steady-state Output * GAIN.

Blue Line = YN Output

CTI 2500 Series CPU Programming Reference Manual V1.33 265

 Real Number Math Operations (MATH)

The MATH instruction executes arithmetic and logical operations using floating point numbers. Integer
numbers may be included in the expression, but all integers are converted into the equivalent Real
number before execution, and then (if required) the result is converted back into integer value before
writing to the memory address entered on the left side of the ASSIGNMENT operator.

MATH Y := X

Y : Result (Writeable Address - Real or Integer)

X: Address Element/Expression or Value Element/Expression

(Real or Integer)

Description of Operation

Each time the MATH instruction executes:

 All expressions on the right side of the ASSIGNMENT (:=) operator are executed. All arithmetic
operations are executed using Real numbers. Any Integer values are converted into the Real
number equivalent before the operation is performed.

 The result is written into the memory address (Y) entered on the left side of the ASSIGNMENT

operator. If an Integer memory address is specified, the result is converted to integer value.

Rules of Execution

The MATH instruction according to the following rules:

 Integers and/or Real numbers can be used in MATH statements.

 Different integer types can be designated as follows:

o 16-bit signed integer – default (i.e., V148)

o 16-bit unsigned integer - add “U” suffix (i.e., V352U)

o 32-bit signed integer – add “L” suffix (i.e., V2120L)

 Different number formats can be used as follows:

o Decimal – default (i.e., 12)

o Hexadecimal – add “0H” prefix (i.e., 0H7FFE)

o Binary – add “0B” prefix (i.e., 0B11001001)

 Real number variable types are designated by a period following the memory address or variable
(i.e., V650. or LSP1.).

 Each MATH instruction must contain a single ASSIGNMENT operator.

 The right side of the ASSIGNMENT operator can contain multiple mathematical expressions made
up of arithmetic and/or logical operations supported by the MATH instruction.

 Expressions can include Memory Array Indexing as described in Section 4.4.3.

 Computations are executed according the MATH Order of Precedence as shown in the table
later in this section. Operations with the highest precedence are performed first. When functions
are equivalent in precedence, calculations are made from left to right. For example, the
expression (A / B * C) is calculated first as the quotient of (A / B), and then the result is multiplied
by C.

 Parentheses can also be used to force the order in which a computation is performed. Any
expression enclosed by parentheses is executed before the surrounding operations. For
example, the expression (A – B) / C is calculated first as the difference of (A – B), and then the
result is divided by C.

266 CTI 2500 Series CPU Programming Reference Manual V1.33

CTI 2500 Series CPU Programming Reference Manual V1.33 267

The operations supported by the MATH instruction are shown in the following tables:

Arithmetic
Operation

Symbol Description

Absolute Value ABS Returns numerical value of operand without regard to its sign.

Inverse Sine ARCSIN Computes angle (in Radians) where sine equals the operand.

Inverse Cosine ARCCOS Computes angle (in Radians) where cosine equals the operand.

Inverse Tangent ARCTAN Computes angle (in Radians) where Tangent equals the operand.

Round Up CEIL Returns the smallest integer that is not less than the operand.

Cosine COS Computes trigonometric cosine of angle expressed in Radians.

Exponentiation ** Computes value of base operand raised to the power of exponent
operand. Ex: V5 ** V6 where V5=base and V6=exponent

Exponential EXP Computes value of Natural Log (base e) raised to the power expressed
by the operand. Ex: EXP(V5)

Round Down FLOOR Returns the largest integer that is not greater than the operand.

Fractional FRAC Returns the fractional part of a Real number.

Modulo MOD Returns remainder following division.

Logarithm LOG Computes base 10 logarithm of the operand >= 0. Ex: LOG(V5)

Natural Log LN Computes inverse exponential (EXP) of operand >= 0. Ex: LN(V5)

Round ROUND Returns integer closest to the operand value.

Sine SIN Computes trigonometric sine of angle expressed in Radians.

Square Root SQRT Computes square root of operand.

Tangent TAN Computes trigonometric tangent of angle expressed in Radians.

Truncate TRUNC Returns the integer portion of the operand.

Addition + Computes sum of two operands.

Assignment := Modifies the value of specified variable.

Bitwise AND & Computes value based on Logical AND of corresponding bits in each
operand.

Bitwise OR | Computes value based on Logical OR of corresponding bits in each
operand.

Bitwise XOR ^ Computes value based on Logical Exclusive OR of corresponding bits
in each operand.

Multiplication * Computes product of two operands.

Shift Left << Result of each arithmetic bit shift is equivalent to multiplying by 2.

Shift Right >> Arithmetic Shift Right where sign of integer is preserved.
Result of each bit shift is equivalent to dividing by 2.
Any remainder is rounded toward negative infinity.

Subtraction - Computes difference.

Unary Negation - Produces the negative of its operand.

268 CTI 2500 Series CPU Programming Reference Manual V1.33

Logical
Operation

Symbol Description

Logical AND AND Returns TRUE (1) if both operands are TRUE (non-zero)l
Otherwise it returns FALSE (0)

Logical NOT NOT Returns FALSE (0) if operand is TRUE (non-zero).
Otherwise it returns TRUE (0)

Logical OR OR Returns TRUE (1) if either operand is TRUE (non-zero).
Otherwise FALSE (0).

Equal = Returns TRUE (1) if both operands are equal; otherwise FALSE (0).

Greater Than > Returns TRUE (1) if operands are not equal; otherwise FALSE (0).

Greater Than or
Equal

>= Returns TRUE (1) if first operand is less than the second.
Otherwise it returns FALSE (0).

Less Than < Returns TRUE (1) if first operand is less than or equal to the second.
Otherwise it returns FALSE (0).

Less Than or
Equal

<= Returns TRUE (1) if first operand is greater than the second;
Otherwise it returns FALSE (0).

Not Equal <> Returns TRUE (1) if operands are not equal.
Otherwise it returns FALSE (0).

The Order of Precedence of MATH operations is described in the following table:

Operation Order of Precedence

Absolute Value, Bitwise NOT, Exponentiation, Unary Negation 1 (Highest)

Multiplication, Division, Modulo 2

Addition, Subtraction 3

Shift Left, Shift Right 4

Relational Operations (=, <>, <, <=, >, >=) 5

Logical AND, Bitwise AND 6

Logical OR, Bitwise OR, Bitwise XOR 7

Assignment (:=) 8 (Lowest)

Note:

The NOT operator does not perform the same function in IMATH instruction and MATH instruction.
The NOT operation is executed in IMATH as arithmetic Bitwise NOT (or Complement) while it is executed

in MATH as Logical NOT (inverting TRUE/FALSE result).

CTI 2500 Series CPU Programming Reference Manual V1.33 269

 Pack Data (PACK)

The PACK instruction copies discrete and/or word data to or from a memory Table. PACK is normally
used to consolidate random memory locations into a contiguous memory area so that it can be efficiently
transmitted to/from external devices such as HMI’s. The PACK instruction is used for all standard PLC
memory address types (X/Y, C, WX/WY, V, TCP, TCC, DCP, DSP, DSC, STW). Related instructions
(PACKAA, PACKLOOP, and PACKRS) can be used to consolidation of SF variable types.

PACK TO/FROM TABLE: TABLE ADDRESS:

NO. OF POINTS: DATA START ADDR:

TO/FROM TABLE: Direction of data copy - (TO) or (FROM) table.

TABLE ADDRESS Starting Address of Table (Integer)

(Must be Writeable Address for ‘PACK TO’ operation)

NO. OF POINTS: Number of variables to be copied (Address/Value - Integer)

DATA START ADDR: Starting Address of Data to be copied To/From Table (Integer)

(Integer Value can be entered for ‘PACK TO’ operation)

Parameter Definitions

 The data source/destination is determined by the contents of the TO/FROM TABLE Parameter:

o ‘TO’ designates a data copy to Table (Destination = TABLE ADDRESS).
 This operation is normally used to consolidate the memory locations specified in

NO OF POINTS and DATA START ADDR fields into a contiguous memory area. It can also be
used to load an integer constant into a consecutive group of memory locations as
described below.

o ‘FROM’ designates a data copy from Table (Source = TABLE ADDRESS).
 This operation moves data from a consolidated area into memory locations

specified in NO OF POINTS and DATA START ADDR fields.

 The DATA START ADDR / NO OF POINTS fields designate the random memory areas to be copied
TO/FROM TABLE. Up to 20 separate memory blocks can be specified for a single operation. The
NO OF POINTS specify Words (for word addresses) or Bits (for discrete addresses).

 If PACK ‘TO TABLE’ is selected, it is permitted to enter an integer constant value as the DATA

START ADDR. This results in that integer value being written to the number of words in the Table
as specified by the corresponding NO OF POINTS. This operation is identical to the RLL MOVW
instruction when an integer is specified as the SOURCE ADDRESS (A).

270 CTI 2500 Series CPU Programming Reference Manual V1.33

Description of Operation

When data copy ‘TO TABLE’ is designated:

 The contents of each memory block specified by DATA START ADDR / NO OF POINTS are copied to
memory locations beginning with TABLE ADDRESS.

 The contents of word memory blocks (using word address as DATA START ADDR) are copied
sequentially into the Table. The contents of a word block are always copied into the next available
word location within the Table.

 The contents of discrete memory blocks (using bit address as DATA START ADDR) are copied
sequentially into the next available bit location within the Table. Unused bits in a word within the
Table are set to zero.

PACK TO/FROM TABLE: TO TABLE ADDRESS: V150

NO. OF POINTS: 3 DATA START ADDR: WX33

NO. OF POINTS: 5 DATA START ADDR: C31

NO. OF POINTS: 8 DATA START ADDR: Y83

NO. OF POINTS: 2 DATA START ADDR: V201

Source Memory Blocks

 WX33

 WX34

 WX35

V201

V202

C

3

1

C

3

2

C

3

3

C

3

4

C

3

5

Y

8

3

Y

8

4

Y

8

5

Y

8

6

Y

8

7

Y

8

8

Y

8

9

Y

9

0

Destination Table

V150

V151

V152

V153

V154

V155

PACK ‘TO TABLE’ Example:

When PACK ‘TO TABLE’ executes, the contents of each memory block specified by the DATA START ADDR and

NO. OF POINTS fields are copied to Destination Table. In this example, the values in WX33-WX35 are copied to

first 3 words in Table (V150-V152). Next, bit values C31-C35 are written to the first 5 bits in next available word

(V153). Then, bit values Y83-Y90 are copied into the next 8 bit positions in the Table (V153 - Bits 6 thru 13).

Since the next DATA START ADDR (V201) designates a Word, the next copy begins on the available word

boundary. The last 3 bits in V153 are unused and set to “0”. The contents of V201-V202 are then copied to the

next 2 words in the Table (V154-V155).

CTI 2500 Series CPU Programming Reference Manual V1.33 271

When data copy ‘FROM Table’ is designated::

 The contents of the memory locations starting with TABLE ADDRESS.are sequentially copied into
the memory block(s) specified by DATA START ADDR / NO OF POINTS fields. The data copy begins
at the first memory block and continues until all memory blocks are completed.

 Word values are copied to memory block areas that have a word address as DATA START ADDR. A
word copy always begins on the next available word boundary within the Table.

 Bit values are copied to discrete memory areas (specified by bit address as DATA START ADDR).
Bit data is copied starting with the next available bit location within the Table.

PACK TO/FROM TABLE: FROM TABLE ADDRESS: V240

NO. OF POINTS: 6 DATA START ADDR: C65

NO. OF POINTS: 13 DATA START ADDR: C73

NO. OF POINTS: 2 DATA START ADDR: V88

NO. OF POINTS: 1 DATA START ADDR: V97

NO. OF POINTS: 4 DATA START ADDR: C97

PACK ‘FROM TABLE’ Example:

Destination Memory Blocks

Source Table

C

6

5

C

6

6

C

6

7

C

6

8

C

6

9

C

7

0

C

7

3

C

7

4

C

7

5

C

7

6

C

7

7

C

7

8

C

7

9

C

8

0

C

8

1

C

8

2

C

8

3

C

8

4

C

8

5

C

9

6

C

9

7

C

9

8

C

9

9

V240

V241

V242

V243

V244

V245

V88

V89

V97

When PACK ‘FROM TABLE’ executes, the contents of the Table memory are copied sequentially to the locations

specified by the DATA START ADDR and NO. OF POINTS fields. In this example, the first 6 bits in V240 (Table Start

Address) are copied to C65-C70, and the next 13 bits (spanning V240-V241) are copied to C73-C85.

Since the next DATA START ADDR (V88) is a Word, the next copy begins on the available word boundary. The

contents of V242-V243 are then copied to V88-V89. Next, the contents of V244 are written to V97. Finally, the next 4

bits (first four bits in V245) are copied to C96-C99.

272 CTI 2500 Series CPU Programming Reference Manual V1.33

 Pack Analog Alarm Data (PACKAA)

The PACKAA instruction copies Analog Alarm Special Function variables to or from a memory Table.
PACKAA is used to consolidate specified data associated with a particular alarm into a contiguous
memory area so that it can be efficiently transmitted to/from external devices such as HMI’s. The
PACKAA instruction can be used for variables expressed as integers and/or real numbers. Related
instructions (PACK, PACKLOOP, and PACKRS) can be used to consolidate other variable types.

PACKAA TO/FROM TABLE: TABLE ADDRESS:

ALARM NUMBER:

PARAMETERS:

TO/FROM TABLE: Direction of data copy - (TO) or (FROM) table.

TABLE ADDRESS Starting Address of Table (Integer)

(Must be Writeable Address for ‘PACKAA TO’ operation)

ALARM NUMBER: Analog Alarm Number (Address/Value - Integer)

(Maximum Alarm Number is dependent on CPU Model)

PARAMETERS: Analog Alarm Variables to be copied To/From Table

(Address/Value - Real or Integer)

Parameter Definitions

 The data source/destination is determined by the contents of the TO/FROM TABLE Parameter:

o ‘TO’ designates a data copy to Table (Destination = TABLE ADDRESS).
 This operation is used to consolidate the Analog Alarm data values into a

contiguous memory area.

o ‘FROM’ designates a data copy from Table (Source = TABLE ADDRESS).
 This operation moves data from a consolidated memory area into the specified

Analog Alarm variables.

 ALARM NUMBER specifies the Analog Alarm Number to be used in the PACKAA operation. All
variables must be associated with a single Alarm Number.

 PARAMETERS designate the Analog Alarm variables to be copied TO/FROM TABLE. Up to 8
separate Alarm variables can be specified for a single operation.

 A particular Alarm variable can be accessed as integer, real number, or both. The data type
associated with each variable depends on the syntax used to reference it. A variable symbol that
is not followed by a period designates an integer value. A symbol followed by a period (.)
designates a Real number.

Note:

All real numbers are stored as single-precision (32-bit) floating point values in
IEEE Standard (IEEE-754) format and utilize two consecutive memory locations.

CTI 2500 Series CPU Programming Reference Manual V1.33 273

The following table details the Analog Alarm variables and associated data type(s)

Alarm Variable Name Symbol Data Type

ALARM OPERATION FLAGS (V-FLAGS) AVF Integer

ALARM C-FLAGS HIGH WORD ACFH Integer

ALARM C-FLAGS LOW WORD ACFL Integer

ALARM ACKNOWLEDGE FLAGS AACK Integer

ALARM DEADBAND AADB / AADB. Int / Real

ERROR AERR / AERR. Int / Real

HIGH-HIGH ALARM LIMIT AHHA / AHHA. Int / Real

HIGH ALARM LIMIT AHA / AHA. Int / Real

LOW ALARM LIMIT ALA / ALA. Int / Real

LOW-LOW ALARM LIMIT ALLA / ALLA. Int / Real

RATE OF CHANGE ALARM LIMIT ARCA. Real

ORANGE DEVIATION ALARM LIMIT AODA / AODA. Int / Real

YELLOW DEVIATION ALARM LIMIT AYDA / AYDA. Int / Real

PROCESS VARIABLE APV / APV. Int / Real

PROCESS VARIABLE HIGH LIMIT APVH. Real

PROCESS VARIABLE LOW LIMIT APVL. Real

SET POINT ASP / ASP. Int / Real

SET POINT HIGH LIMIT ASPH / ASPH. Int / Real

SET POINT LOW LIMIT ASPL / ASPL. Int / Real

ALARM SAMPLE RATE ATS. Real

274 CTI 2500 Series CPU Programming Reference Manual V1.33

Description of Operation

When data copy ‘TO TABLE’ is designated:

 The contents of the designated Alarm variables are copied to the memory locations beginning
with TABLE ADDRESS. Each variable is copied in the order in which they are entered in the
PARAMETERS field.

 Variables designated as integers use a single word, while real number values occupy two
consecutive registers within the Table.

When PACKAA ‘TO TABLE’ executes, the contents of each SF Alarm Variable listed in PARAMETERS

associated with ALARM NUMBER are copied into the Destination Table. In this example, the integer value

corresponding to Alarm2 V-Flags (AVF2) is written to first word in Table (V235). The real number value of Alarm2

PV (APV2.) is then written to the next 2 words (V236-V237). Next, the Alarm2 SP value accessed as real number

(ASP2.) is written to the next 2 words (V238-V239). Finally, the most significant 16-bits of the Alarm2 C-Flags

(ACFH2) are written as an integer value into the next available word in the Table (V240).

Destination Table

PACKAA ‘TO TABLE’ Example:

Source = Alarm 2 S-Memory

 AVF2

APV2.

ASP2.

ACFH2

V235

V236

V237

V238

V239

V240

PACKAA TO/FROM TABLE: TO TABLE ADDRESS: V235

ALARM NUMBER: 2

PARAMETERS: AVF APV. ASP. ACFH

CTI 2500 Series CPU Programming Reference Manual V1.33 275

When data copy ‘FROM TABLE’ is designated:

 The contents of the memory locations starting with TABLE ADDRESS are sequentially copied into
the Alarm variables specified in PARAMETERS. The data copy begins at the first memory block and
continues until all memory blocks are completed.

 Variables designated as integers are loaded as a single word, while real number values are
copied from two consecutive words within the Table.

The PACKAA ‘FROM TABLE’ operation copies the contents of the Table memory into the SF Alarm Variables

associated with ALARM NUMBER that are listed as PARAMETERS. In this example, the first word in the Table

(V235) is accessed as an integer value and copied to Alarm2 V-Flags variable (AVF2). The next 2 words (V236-

V237) are accessed as a real number and written to Alarm2 PV variable (APV2.). The next 2 words in the Table

(V238-V239) are accessed as a real number and copied to Alarm2 SP (ASP2.) . Finally, the contents of the last

word (V240) are copied to the most significant 16-bits of the Alarm2 C-Flags variable (ACFH2).

PACKAA ‘FROM TABLE’ Example:

PACKAA TO/FROM TABLE: FROM TABLE ADDRESS: V235

ALARM NUMBER: 2

PARAMETERS: AVF APV. ASP. ACFH

Source = Table

V235

V236

V237

V238

V239

V240

 AVF2

APV2.

ASP2.

ACFH2

Dest = Alarm 2 S-Memory

276 CTI 2500 Series CPU Programming Reference Manual V1.33

 Pack Loop Data (PACKLOOP)

The PACKLOOP instruction copies Analog PID Loop Special Function variables to or from a memory
Table. PACKLOOP is used to consolidate specified data associated with a particular loop into a
contiguous memory area so that it can be efficiently transmitted to/from external devices such as HMI’s.
The PACKLOOP instruction can be used for variables expressed as integers and/or real numbers.
Related instructions (PACK, PACKAA, and PACKRS) can be used to consolidate other variable types.

PACKLOOP TO/FROM TABLE: TABLE ADDRESS:

LOOP NUMBER:

PARAMETERS:

TO/FROM TABLE: Direction of data copy - (TO) or (FROM) table.

TABLE ADDRESS Starting Address of Table (Integer)

(Must be Writeable Address for ‘PACKLOOP TO’ operation)

LOOP NUMBER: PID Loop Number (Address/Value - Integer)

(Maximum Loop Number is dependent on CPU Model)

PARAMETERS: PID Loop Variables to be copied To/From Table

(Address/Value - Real or Integer)

Parameter Definitions

 The data source/destination is determined by the contents of the TO/FROM TABLE Parameter:

o ‘TO’ designates a data copy to Table (Destination = TABLE ADDRESS).
 This operation is used to consolidate the PID Loop data values into a contiguous

memory area.

o ‘FROM’ designates a data copy from Table (Source = TABLE ADDRESS).
 This operation moves data from a consolidated memory area into the specified

PID Loop variables.

 LOOP NUMBER specifies the PID Loop Number to be used in the PACKLOOP operation. All
variables must be associated with a single PID Loop.

 PARAMETERS designate the PID Loop variables to be copied TO/FROM TABLE. Up to 8 separate
Loop variables can be specified for a single operation.

 A particular PID Loop variable can be accessed as integer, real number, or both. The data type
associated with each variable depends on the syntax used to reference it. A variable symbol that
is not followed by a period designates an integer value. A symbol followed by a period (.)
designates a real number.

Note:

All Real numbers are stored as single-precision (32-bit) floating point values in
IEEE Standard (IEEE-754) format and utilize two consecutive memory locations.

CTI 2500 Series CPU Programming Reference Manual V1.33 277

The following table details the PID Loop variables and associated data type(s)

PID Loop Variable Name Symbol Data Type

LOOP OPERATION FLAGS (V-FLAGS) LVF Integer

LOOP C-FLAGS HIGH WORD LCFH Integer

LOOP C-FLAGS LOW WORD LCFL Integer

LOOP SAMPLE RATE LTS. Real

LOOP GAIN (PROPORTIONAL TERM) LKC. Real

LOOP RATE (DERIVATIVE TERM) LTD. Real

DERIVATIVE GAIN LIMITING COEFFICIENT LKD. Real

LOOP RESET (INTEGRAL TERM) LTI. Real

LOOP ERROR LERR / LERR. Int / Real

LOOP BIAS LMX / LMX. Int / Real

LOOP OUTPUT LMN / LMN. Int / Real

PROCESS VARIABLE LPV / LPV. Int / Real

PROCESS VARIABLE HIGH LIMIT LPVH. Real

PROCESS VARIABLE LOW LIMIT LPVL. Real

SET POINT LSP / LSP. Int / Real

SET POINT HIGH LIMIT LSPH / LSPH. Int / Real

SET POINT LOW LIMIT LSPL / LSPL. Int / Real

ALARM ACKNOWLEDGE FLAGS LACK Integer

ALARM DEADBAND LADB / LADB. Int / Real

HIGH-HIGH ALARM LIMIT LHHA / LHHA. Int / Real

HIGH ALARM LIMIT LHA / LHA. Int / Real

LOW ALARM LIMIT LLA / LLA. Int / Real

LOW-LOW ALARM LIMIT LLLA / LLLA. Int / Real

RATE OF CHANGE ALARM LIMIT LRCA. Real

ORANGE DEVIATION ALARM LIMIT LODA / LODA. Int / Real

YELLOW DEVIATION ALARM LIMIT LYDA / LYDA. Int / Real

RAMP/SOAK FLAGS LRSF Integer

RAMP/SOAK STEP NUMBER LRSN Integer

278 CTI 2500 Series CPU Programming Reference Manual V1.33

Description of Operation

When data copy ‘TO TABLE’ is designated:

 The contents of the designated Loop variables are copied to the memory locations beginning with
TABLE ADDRESS. Each variable is copied in the order in which they are entered in the PARAMETERS
field.

 Variables designated as integers use a single word, while real number values occupy two
consecutive registers within the Table.

When PACKLOOP ‘TO TABLE’ executes, the contents of each SF Loop Variable listed in PARAMETERS

associated with LOOP NUMBER are copied into the Destination Table. In this example, the integer value

corresponding to Loop6 V-Flags (LVF6) is written to first word in Table (V171). The Loop6 Gain (LKC6.) is

accessed as a real number and written to the next 2 words (V172-V173). Next, the Loop6 High Alarm Limit is

accessed as real number (LHA6.) and written to the next 2 words (V174-V175). Finally, the Loop6 Output integer

value (LMN6) is written into the next available word in the Table (V176).

Destination Table

PACKLOOP ‘TO TABLE’ Example:

Source = Loop 6 S-Memory

 LVF6

LKC6.

LHA6.

LMN6

V171

V172

V173

V174

V175

V176

PACKLOOP TO/FROM TABLE: TO TABLE ADDRESS: V171

LOOP NUMBER: 6

PARAMETERS: LVF LKC. LHA. LMN

CTI 2500 Series CPU Programming Reference Manual V1.33 279

When data copy ‘FROM TABLE’ is designated:

 The contents of the memory locations starting with TABLE ADDRESS are sequentially copied into
the Loop variables specified in PARAMETERS. The data copy begins at the first memory block and
continues until all memory blocks are completed.

 Variables designated as integers are loaded as a single word, while real number values are
copied from two consecutive words within the Table.

The PACKLOOP ‘FROM TABLE’ operation copies the contents of the Table memory into the Loop Variables

associated with LOOP NUMBER that are listed as PARAMETERS. In this example, the first word in the Table

(V171) is accessed as an integer value and copied to Loop6 V-Flags variable (LVF6). The next 2 words (V172-

V172-V173) are accessed as a real number and written to Loop6 Gain variabla (LKC6.). The next 2 words in the

Table (V174-V175) are accessed as a real number and copied to Loop6 High Alarm Limit (LHA6.) . Finally, the

contents of the last word (V176) are copied to the integer variable Loop6 Output (LMN6).

PACKLOOP ‘FROM TABLE’ Example:

PACKLOOP TO/FROM TABLE: FROM TABLE ADDRESS: V171

LOOP NUMBER: 6

PARAMETERS: LVF LKC. LHA. LMN

Source = Table

V171

V172

V173

V174

V175

V176

LVF6

LKC6.

LHA6.

LMN6

Dest = Loop 6 S-Memory

280 CTI 2500 Series CPU Programming Reference Manual V1.33

 Pack Ramp/Soak Data (PACKRS)

The PACKRS instruction copies Analog PID Loop Ramp/Soak profile data to or from a memory Table.
PACKRS is used to consolidate Ramp/Soak profile data for sending to a HMI device and provide a
means to allow the Ramp/Soak profile to be modified through the HMI. Related instructions (PACK,
PACKAA, and PACKLOOP) can be used to consolidate other variable types.

PACKRS TO/FROM TABLE: TABLE ADDRESS:

LOOP NUMBER:

NO. OF STEPS:: STARTING STEP:

TO/FROM TABLE: Direction of data copy - (TO) or (FROM) table.

TABLE ADDRESS Starting Address of Table (Integer)

(Must be Writeable Address for ‘PACKRS TO’ operation)

LOOP NUMBER: PID Loop Number (Address/Value - Integer)

(Maximum Loop Number is dependent on CPU Model)

NO. OF STEPS: Number of Ramp/Soak steps to be copied To/From Table

(Address/Value - Integer)

STARTING STEP: First Ramp/Soak Step number to be including in data copy

(Address/Value - Integer)

Parameter Definitions

 The data source/destination is determined by the contents of the TO/FROM TABLE Parameter:

o ‘TO’ designates a data copy to Table (Destination = TABLE ADDRESS).
 This operation is used to copy PID Loop Ramp/Soak profile data into a

contiguous memory area.

o ‘FROM’ designates a data copy from Table (Source = TABLE ADDRESS).
 This operation moves data from a consolidated memory area into the specified

steps of PID Loop Ramp/Soak profile.

 LOOP NUMBER specifies the PID Loop Number whose Ramp/Soak profile is included in the
PACKRS operation. All data must be associated with a single PID Loop.

 NO. OF STEPS specifies the number of Ramp/Soak steps to be copied TO/FROM TABLE.

 STARTING STEP is the Ramp/Soak step number where the PACKRS operation begins. This
designates the first step data to be included in the data copy.

 The STARTING STEP and NO. OF STEPS parameters must specify a range of existing Ramp/Soak
profile steps for the PACKRS operation to successfully complete.

Note:

All Real numbers are stored as single-precision (32-bit) floating point values in
IEEE-754 format and utilize two consecutive memory locations.

CTI 2500 Series CPU Programming Reference Manual V1.33 281

Description of Operation

When data copy ‘TO TABLE’ is designated:

 Data from the designated NO OF STEPS beginning with the STARTING STEP of the Ramp/Soak
Profile for PID LOOP NUMBER is copied to the memory locations beginning with TABLE ADDRESS.

 The designated Ramp/Soak Profile steps must exist for the operation to complete.

When data copy ‘FROM TABLE’ is designated:

 The contents of the memory locations starting with TABLE ADDRESS are verified to ensure the data
represents a valid Ramp/Soak Profile steps before the data is copied. If any parameter is
detected as ‘invalid’, the data for that step is not overwritten by the data in the memory table.

This data is validated as follows:

1) Words 1-2 must contain a valid STEP TYPE IDENTIFIER and STATUS BIT ADDRESS

2) Words 3-4 must contain a valid SET POINT or SOAK TIME (if Soak step) as Real number

3) Words 5-6 must contain a valid RAMP RATE or DEADBAND (if Soak step) as Real number.
The CTI 2500 Series controller accepts a value of 0.0 as a valid RAMP RATE. The
SIMATIC® 505 PLC considers this an invalid value and will not copy a step that includes
a ‘0.0’ as RAMP RATE into the Ramp/Soak Profile.

Caution:

Take care when using the PACKRS ‘FROM TABLE’ instruction to modify the
Ramp/Soak Profile for an operational PID Loop. Unpredictable erratic operation can

result if the Ramp/Soak function is in progress when the profile data is changed.

The following methods to ensure that R/S Profile update is performed when it is not in use:

1) Execute the PACKRS instruction only when the Profile Complete Bit (Bit 4) in the Loop
Ramp/Soak Flags (LRSF) for the corresponding PID Loop is ON.

2) Execute the PACKRS instruction only when the corresponding PID Loop Mode is set to
Manual. Note the Ramp/Soak Profile will start at Step 1 when the Loop is placed in Auto.

282 CTI 2500 Series CPU Programming Reference Manual V1.33

Data Format of Ramp/Soak Profile Steps

When stored in a Table, the data in each Ramp/Soak Profile step occupies 6 consecutive words.

 Words 1-2: Step Type Identifier and Status Bit Address

 Word 1 / Bit 1 specifies the Step Type (0=Ramp Step / 1=Soak Step).

 The Status Bit must be assigned to a writeable discrete point (C or Y).
 If the Status Bit is located in the first “page” of addresses for the specified

memory type (C1-C512 or Y1-Y1024), the address is stored in its short form.
 Word 2 is unused when Word 1 contains an address in short form.

Word 1:

Short Form Address

Word 1: Step Type Identifier and Status Bit Address

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S Bit Type Offset

where:

S: Step Type (0= Ramp Step / 1= Soak Step)

Bit Type: 0 0 0 = Control Relay (C)

1 1 0 = Discrete Output (Y)

Offset: Same as Point Number

 An example showing the implementation of the Short Form Address follows:

Short Form Address Example:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 00 0 1000 0 1 0 1 1 1 1 1

0 00 0 0000 0 0 0 0 0 0 0 0

Word 1:

Word 2:

Soak Step with Status Bit Address = C351

Note:
It is always acceptable to use the Long Form Address format when the Status Bit Address is greater than
first “page” of addresses for the specified memory type (C1-C512 or Y1-Y1024). In fact, the PLC always

uses the Long Form Address format for the PACKRS ‘TO TABLE’ instruction in this case.

As an alternative, the Short Form Address format may be used with the PACKRS ‘FROM TABLE’
instruction for Status Bit Addresses in the range of C1-C4095 or Y1-Y4095.

CTI 2500 Series CPU Programming Reference Manual V1.33 283

 If the Status Bit address is outside the Short Form Address range, the Long Form

Address is used.

Long Form Address

Words 1-2: Step Type Identifier and Status Bit Address

where: S: Step Type (0= Ramp Step / 1= Soak Step)

Long Form ID: 1 1 1

Page Number: (Page Number-1) / Page Size

Bit Type: 0 0 0 = Control Relay (C)

1 1 0 = Discrete Output (Y)

Offset: Offset within current page of addresses

((Point Number-1) modulo Page Size) + 1

Page Size: Control Relays (C) = 512

Discrete Outputs (Y) = 1024

Word 1:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 0 0S
Long

Form ID
Page Number

Word 2: 0 0 0 0 OffsetBit Type

 An example showing the implementation of the Long Form Address follows:

Long Form Address Example:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 11 1 0000 0 0 0 0 1 1 0 0

0 00 0 1000 0 1 0 1 0 0 1 0

Word 1:

Word 2:

Ramp Step with Status Bit Address = C6482

Page Number Calculation: (6482-1) / 512 = 12

Offset Calculation: ((6482-1) modulo 512) + 1 = 338

 Words 3-4: Set Point (if Ramp step) or Soak Time (if Soak step)
 Stored as Real number

Note:

The acceptable values for this parameter in the CTI 2500 Series controller differ from the
SIMATIC® 505 PLC. See “Description on Operation” in this section for details.

 Words 5-6: Ramp Rate (if Ramp step) or Deadband (if Soak step)
 Stored as Real number

284 CTI 2500 Series CPU Programming Reference Manual V1.33

PACKRS ‘TO TABLE’ Example:

PACKRS TO/FROM TABLE: TO TABLE ADDRESS: V40

LOOP NUMBER: 10

NO. OF STEPS: 3 STARTING STEP: 3

Step 3 Data

PID Loop 10

Step R/S Stat Bit SetPoint Ramp Rate Soak Time Deadband

1 Ramp C329 37.5 4.25

2 Soak C330 9.0 2.25

 3 Ramp C493 46.5 3.65

4 Soak C494 12.5 1.14

5 Ramp C565 52.2 1.45

6 End

Source = Loop 10 R/S Table

 Destination = Memory Table Hex

V46

V47

V48

V49

V50

V51

1 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 1

1 1 1 0 1 0 1 1 1 0 0 0 0 1 0 1

Soak step w/ Status Bit = C494

Soak Time = 12.5 (stored as Real)

Deadband = 1.14 (stored as Real)

81EE

0000

4148

0000

3F91

EB85

Ramp step w/ Status Bit = C565

SetPoint = 52.2 (stored as Real)

Ramp Rate = 1.45 (stored as Real)

7001

0035

4250

CCCD

3FB9

999A

V52

V53

V54

V55

V56

V57

10 1 1 0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1

10 0 1 1 1 1 1 1 0 1 1 1 0 0 1

1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0

0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1

V40

V41

V42

V43

V44

V45

0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 1 1 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1

1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0

Ramp step w/ Status Bit = C493

SetPoint = 46.5 (stored as Real)

Ramp Rate = 3.65 (stored as Real)

01ED

0000

423A

0000

4069

999A

Step 4 Data

Step 5 Data

CTI 2500 Series CPU Programming Reference Manual V1.33 285

PACKRS ‘FROM TABLE’ Example:

PACKRS TO/FROM TABLE: FROM TABLE ADDRESS: V190

LOOP NUMBER: 14

NO. OF STEPS: 2 STARTING STEP: 1

Step 2 Data

Step 1 Data

 Source = Memory Table Hex

V196

V197

V198

V199

V200

V201

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Soak step w/ Status Bit = Y1025

Soak Time = 16.0 (stored as Real)

Deadband = 3.33 (stored as Real)

F001

6001

4180

0000

4053

3333

V190

V191

V192

V193

V194

V195

0 00 1 1 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 0 0 0 0 0 1 0 1 1 1 0 1 0

0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 1

Ramp step w/ Status Bit = Y1024

SetPoint = 36.3 (stored as Real)

Ramp Rate = 5.82 (stored as Real)

6400

0000

4211

3333

40BA

3D71

PID Loop 14

Step R/S Stat Bit SetPoint Ramp Rate Soak Time Deadband

1 Ramp Y1024 36.3 5.82

2 Soak Y1025 16.0 3.33

 3 Ramp Y1080 57.75 2.95

4 End

Destination = Loop 14 R/S Table

286 CTI 2500 Series CPU Programming Reference Manual V1.33

 Pet Scan Watchdog (PETWD)

The PETWD instruction is used to extend the PLC Scan Watchdog Time Limit by resetting the scan timer
when it is executed within an SF Program / Subroutine. This allows the user to override the configured
scan time limit when needed to perform a time-consuming task within an SF program marked for ‘IN-LINE’
execution.

PETWD

Description of Operation

Each time the PETWD instruction is encountered:

 The PLC Scan Watchdog timer is reset.

 Execution of the SF Program/Subroutine continues at the next instruction.

WARNING:

The PETWD instruction overrides the PLC Scan Watchdog, a critical safety component
In the controller. The PLC Scan Watchdog guarantees that the controller and application program

complete each PLC scan within the configured time limit necessary to properly control your
process.

It is possible to execute the PETWD instruction within an infinite loop, preventing the
PLC Scan Watchdog from expiring and issuing a FATAL ERROR to shut down the control system.

This would leave your process in an uncontrolled condition -- possibly resulting in damage to
equipment and/or severe injury to personnel.

In order to prevent the possibility of executing PETWD in an infinite loop, it be placed above any
LABEL instructions in the SF Program / Subroutine.

CTI 2500 Series CPU Programming Reference Manual V1.33 287

 Print Message (PRINT)

The PRINT instruction sends a user-defined ASCII message out of the RS232/RS422 serial
communications port located on the CPU front panel. The message can be formatted to include ASCII
text characters and integer and/or real variables from PLC memory.

PRINT PORT: MESSAGE:

PORT: RS-232 Comm Port Number (MUST = 1)

MESSAGE: ASCII Message to Print. Message format defined below.

Note:

The PRINT instruction operates differently from the PRINT instruction used with the
SIMATIC® 505 PLC. See “Description on Operation” in this section before using.

Hardware Configuration

 The PRINT instruction transmits data out of the RS-232/RS-422 serial port only when the applicable
jumper is set in the proper position. Serial port baud rate and RS232/RS422 electrical interface can
be selected using SW2-SW5. See the CTI Controller Installation and Operations Guide (Part# 062-
00370) for details on setting the jumper and related switches.

Print Message Formatting

A message can include up to 1019 characters including ASCII text, address variables, variable text,
and mathematical expressions as described below:

 ASCII TEXT

 ASCII text is the pre-defined characters to be printed in the message. ASCII text sections
are delimited by quotation marks.

 ASCII text consists of printable ASCII characters in the range of 20H – 7EH, and special
control characters <CR><LF> and <FF>. Lower–case alpha characters are converted to
the upper-case equivalent.

 Carriage Return – LineFeed control characters (ASCII 0DH / 0AH) can be printed within
an ASCII text section by pressing [Return] or [Enter] within an ASCII text section (inside
quotation marks).

 The FormFeed control character (ASCII 0CH) can be inserted by entering the identifier
<FF> within an ASCII text section (inside quotation marks).

 The Double Quotation character (ASCII 22H) can be printed by preceded it with another
Double Quotation character within an ASCII text section.

288 CTI 2500 Series CPU Programming Reference Manual V1.33

PRINT PORT: 1 MESSAGE:

“A CARRAIGE RETURN/LINEFEED FOLLOWS THIS TEXT SECTION

“

PRINT PORT: 1 MESSAGE:

“A FORMFEED FOLLOWS THIS SENTENCE.<FF>”

ASCII Text Examples:

ADDRESS VARIABLES

 Address variables print the contents of the specified memory locations as a 16-bit signed
integer or real number. Each address variable must be separated from ASCII text
sections or other variables by a ‘space’.

 Each integer variable consumes 6 characters (5 digits plus sign) in the message. Integer
variables are printed right-justified in the 6-character field with floating minus sign.

 Real variables are specified by a period (.) following the address (i.e., V372.). Real
variables consume 12 characters in the message and are printed right-justified in the 12-
character field using a FORTRAN G12.5 format.

PRINT PORT: 1 MESSAGE:

“THE INTEGER VALUE OF WY105 = “ WY105.

“THE REAL VALUE OF V481-V482 =” V481.

Address Variable Example:

 Special address variable formatting can be used to print the PLC Date and/or Time. The
current Date is printed in YY/MM/DD format using the variable syntax STW141:DATE.
The current Time is printed in HH:MM:SS format using the variable syntax
STW141:TIME.

PRINT PORT: 1 MESSAGE:

“THE PLC CURRENT DATE AND TIME:“ STW141:DATE STW141:TIME

DATE / TIME Variables Example:

CTI 2500 Series CPU Programming Reference Manual V1.33 289

 Variable expressions can be used to reference a variable indexed memory location. The

expression cannot contain a ‘space’, and the ASSIGNMENT operator (:=) cannot be used
within the PRINT message area.

PRINT PORT: 1 MESSAGE:

“THIS IS AN EXAMPLE OF A VARIABLE EXPRESSION”

“IF V50=8, THIS PRINTS THE VALUE OF V208” V200(V50+1)

Variable Expression Example:

VARIABLE TEXT

 Variable Text entries are used print the contents of each specified memory location (V, K)
as two (8-bit) ASCII characters. This allows non-printable control characters to be easily
embedded within the output data.

 Variable Text entries are indicated by the starting memory address followed by a percent
sign (%) and the character length to be printed. Entering a character length of zero allows
the character length to be set by the program. In this case, the integer contents of the
starting memory address is used as character length.

PRINT PORT: 1 MESSAGE:

“THE ASCII VALUES OF V101 - V106 = “ V101%12

Variable Text Examples:

PRINT PORT: 1 MESSAGE:

“NUMBER OF CHARS PRINTED IS BASED ON VALUE IN V46 “ V46%0

“IF V46 = 10, THEN OUTPUT WOULD CONSIST OF 10 CHARS FROM V47-V51”.

290 CTI 2500 Series CPU Programming Reference Manual V1.33

Description of Operation

To allow SF programs containing PRINT statements to be executed in-line, the 2500 Series controller
does not “block” execution the SF program while waiting for the entire message buffer to be output from
the serial port. The transmission of data from the serial port is performed by the operating system while
the controller continues execution of the PLC program.

1. Each time the PRINT instruction is encountered:

 The controller builds the message to be printed based on the PRINT MESSAGE field. The
complete message is placed in the serial port transmit buffer.

 At this point, the PRINT instruction has completed. The SF program continues execution
of the following instruction.

 The “PRINT BUSY” status (STW191.1) is set ON to indicate that the serial port output
buffer has characters waiting to be printed.

 Characters are then transmitted based on selected baud rate. Hardware Handshake is
not supported, and characters are transmitted whether or not a cable is attached to the
serial port. When the entire message buffer has been sent, the “PRINT BUSY” status is set
OFF.

2. This implementation allows the PRINT operation to have minimal effect on system
performance. However, it allows for the possibility that the PRINT instruction can be called
again before the previous data can be transmitted out of the port. Eventually, this action may
cause an overflow of the transmit buffer (approximately 1500 characters), which will result in
output characters being dropped.

 This can be prevented if the “PRINT BUSY” status (STW191.1) is checked before the PRINT
instruction is executed. The PRINT should be executed only if “PRINT BUSY” is OFF.

Logic Example for testing PRINT BUSY State:

SF Program 15 containing the PRINT statement

executes only when the ‘Print Busy” statua = OFF.

STW191.1

INLINE: NO

C15C12 15SFPGM

CTI 2500 Series CPU Programming Reference Manual V1.33 291

3. If an error is detected that prevents successfully completion of the PRINT operation, the cause

of the error is indicated as follows:

 Jumper incorrectly set for PRINT operation (STW191.2 ON)

 Serial Port Transmit Buffer Overflow (STW191.3 ON)

 Serial Port UART Failure (STW191.4 ON)

The execution of the SF program after detecting a PRINT error is dependent on the state of the
“CONTINUE ON ERROR” flag set in the SFPGM Header or SFSUB instruction box.

Note:

The PRINT errors shown above (STW191/ Bits 2-4) are PERMANENT error conditions
that stay set until power is cycled to the PLC or manually cleared by the user.

4. All errors associated with the PRINT MESSAGE data (such as attempting to access an
unconfigured memory address) are included in the Special Function Error Reporting as
described in Section 4.3.

292 CTI 2500 Series CPU Programming Reference Manual V1.33

 Return from SF Program / Subroutine (RETURN)

The RETURN instruction immediately terminates the executing SF Program or SF Subroutine and returns
control to the entity that called it (RLL, PID Loop, Analog Alarm, SF Program, SF subroutine). It can be
used for conditional program termination as needed. It is not required to insert RETURN at the end of an
SF program as the program terminates after executing the last instruction.

RETURN

Description of Operation

If the RETURN instruction is encountered in an SF Program, the program terminates and control

 If an SF Program is running, the program terminates and control returns to the task (RLL, PID
Loop, or Analog Alarm) that called it.

 If an SF Subroutine is running, the program terminates and execution continues at the instruction
following the SF Subroutine CALL (RLL, SF Program, or SF Subroutine).

Conditional RETURN Example

0025 IF SFEC > 0

0026 RETURN

0027 ENDIF

CTI 2500 Series CPU Programming Reference Manual V1.33 293

 Scale Analog Input to Engineering Units (SCALE)

The SCALE instruction converts an integer value within a standard analog range to engineering units
scaled within the range of the specified Low / High Limits. The result can be designated to be an integer
or real number. A complementary instruction (UNSCALE) can be used to convert a real number to a
standard analog output.

SCALE BINARY INPUT: SCALED RESULT::

LOW LIMIT:: HIGH LIMIT::

20% OFFSET: BIPOLAR:

BINARY INPUT: Address of analog value to be scaled (Integer)

SCALED RESULT: Address where result is written (Integer/Real - Writeable)

LOW LIMIT: Low Limit of Result in Engr Units (integer/Real Constant)

HIGH LIMIT: High Limit of Result in Engr Units (Integer/Real Constant)

20% OFFSET Specifies 20% Offset for Input Range (YES / NO)

BIPOLAR: Specifies Bipolar Input Range (YES / NO)

Parameter Definitions

 BINARY INPUT designates the memory address for integer value used as input.

 SCALED RESULT designates the memory address where the SCALE result is written. The address
can specify an integer or real number (when address is followed by a period (.)).

 LOW LIMIT is the low end (0%) of the range used for SCALE result. This value must be entered as
an integer or real number constant value.

 HIGH LIMIT is the high end (100%) of the range used for SCALE result. This value must be
entered as an integer or real number constant value.

 20% OFFSET indicates an analog range where the BINARY INPUT includes a 20% offset (such as 1-
5V or 4-20mA analog range). Enter ‘YES’ to specify an input range with 20% offset.

 BIPOLAR indicates an analog range where the Binary Input corresponds to a bipolar range (such
as -5-to-+5V analog range). Enter ‘YES’ to specify a bipolar input range.

Note:
It is not permitted to set both 20% OFFSET and BIPOLAR selections to ‘YES’ since that would

define an invalid analog range.

294 CTI 2500 Series CPU Programming Reference Manual V1.33

Description of Operation

Each time the SCALE instruction is called

1. The analog input range is determined based on SCALE parameters:

 Input Range = 0-to-+32000 when both 20% OFFSET = ‘NO’ and BIPOLAR = ‘NO’

 Input Range = +6400–to-+32000 when 20% OFFSET = ‘YES’

 Input Range = -32000-to-+32000 when BIPOLAR = ‘YES’

2. The PERCENTAGE OF INPUT (0-100%) is calculated based on the BINARY INPUT value within the
SCALED ANALOG RANGE and converted to the equivalent percentage of the engineering units
defined by LOW / HIGH LIMITS.

3. The SCALED RANGE OFFSET is calculated as PERCENTAGE OF INPUT * SCALED ANALOG RANGE.
This Offset is then added to the LOW LIMIT to produce the SCALED RESULT.

4. If the SCALED RESULT is an integer address, the result is rounded to the closest integer value.

5. If the SCALED RESULT is a real number, the result is written within the following ranges:

 5.42101 E-20 to 9.22337 E+19 (SCALED RESULT = positive real number)

 -9.22337 E+18 to -2.71051 E-20 (SCALED RESULT = negative real number)

CTI 2500 Series CPU Programming Reference Manual V1.33 295

 Sequential Data Table (SDT)

The SDT instruction copies the value of a word within a table to a specified memory location. The next
word position to be copied is specified by a Table Pointer that is automatically incremented each time the
SDT instruction executes. This operation is very similar to the MWFT RLL instruction.

SDT INPUT TABLE: OUTPUT:

TABLE PTR: TABLE LENGTH:

RESTART BIT:

INPUT TABLE: Starting Address of Table (Integer)

OUTPUT: Word Address of Destination (Integer - Writeable)

TABLE PTR: Address of Index holding next table position to copy (Int)

TABLE LENGTH: Number of Words in Table (Address/Value - Integer)

RESTART BIT SDT Status Bit (Discrete - Writeable)

Parameter Definitions

 INPUT TABLE designates the memory location that serves as starting Word address for the group
of registers that make up the Data Table.

 OUTPUT is the Word address of the Destination to which data is copied.

 TABLE PTR is the address which holds the Word Index within the Table for the value to be copied
when SDT instruction is next executed.

 TABLE LENGTH is the number of Words in the Data Table. TABLE LENGTH can be specified as a
constant or indirectly via a memory address.

 RESTART BIT designates the discrete location used as the Data Table Status Bit.

Description of Operation

Each time the SDT instruction is called:

1. The TABLE PTR value is incremented by one, and the content of the corresponding memory
location is copied to the OUTPUT. The RESTART BIT is turned ON.

2. If the TABLE PTR value is greater than or equal to the TABLE LENGTH, the TABLE PTR is reset to
zero, the RESTART BIT is turned OFF, and all locations remain unchanged.

3. The values within the Data Table can be modified at any time. The TABLE PTR, OUTPUT, and
RESTART BIT change only when the SDT instruction executes.

Note:
The SDT instruction TABLE PTR is not automatically reset to zero on program startup.

Additional logic must be included to manually reset the Pointer and set the
RESTART BIT = OFF when necessary.

296 CTI 2500 Series CPU Programming Reference Manual V1.33

SDT INPUT TABLE: V325 OUTPUT: V450

TABLE PTR: V320 TABLE LENGTH: 4

RESTART BIT: C44

Before SDT instruction is executed, the following conditions are set:

TABLE PTR (V320) = 0

RESTART BIT (C44) = OFF

SDT instruction executes first time with the following results:

1001 V321

1104 V322 STATUS:

1403 V323 TABLE PTR (V320) = 1

 851 V324 RESTART BIT (C44) = ON

 1001

 OUTPUT (V450)

SDT instruction executes next with the following results:

1001 V321

1104 V322 STATUS:

1403 V323 TABLE PTR (V320) = 2

 851 V324 RESTART BIT (C44) = ON

 1104

 OUTPUT (V450)

SDT instruction executes next with the following results:

1001 V321

1104 V322 STATUS:

1403 V323 TABLE PTR (V320) = 3

 851 V324 RESTART BIT (C44) = ON

 1403

 OUTPUT (V450)

SDT instruction executes next with the following results:

1001 V321

1104 V322 STATUS:

1403 V323 TABLE PTR (V320) = 0

 851 V324 RESTART BIT (C44) = OFF

 851

 OUTPUT (V450)

SDT Example:

CTI 2500 Series CPU Programming Reference Manual V1.33 297

 Conditional Branching – SWITCH / CASE / ENDSWITCH

The SWITCH, CASE, and ENDSWITCH instructions are used together to perform conditional branching
where program control is transferred to a specific point based on the value of an expression. These
instructions provide an alternative to using multiple IF / ENDIF statements when several different program
execution paths are required.

Note:

This feature is available only when using 2500 Series CPU firmware V6.0 or later
and 505 WorkShop V4.50 or later as PLC programming software.

SWITCH << Arithmetic/Logical Expression >>

CASE << Integer Constant >>

<< SF instruction >>

…

<< SF Instruction >>

BREAK

(** CASE segment may be repeated as many times as required)

DEFAULT

<< SF Instruction >>

… (Optional)

<< SF Instruction >>

BREAK

ENDSWITCH

 << Arithmetic/Logical Expression >> = Any valid integer-only (IMATH) Expression

Description of Operation

The SWITCH instruction evaluates an integer-only (IMATH) expression, and based on the result, directs
execution to the CASE statement with the matching integer value. Program execution continues from
there until a BREAK or ENDSWITCH statement is found. At that point, execution jumps to the statement
following ENDSWITCH.

The DEFAULT statement is an optional special version of CASE for processing all values not otherwise
listed. If a CASE statement with integer value matching the SWITCH expression result does not exist,
program execution jumps to the DEFAULT instruction. If the DEFAULT instruction does not exist, then
execution jumps to first instruction after ENDSWITCH.

The BREAK statement terminates execution of the SWITCH instruction. When BREAK is encountered,
program control jumps to the statement after ENDSWITCH. A BREAK statement is normally placed at the
end of each CASE segment. If BREAK is omitted, execution falls through to the next CASE segment.

There is no limit to the number of CASE statements that may be included or number/type of SF
statements that can be executed within a SWITCH / ENDSWITCH function

298 CTI 2500 Series CPU Programming Reference Manual V1.33

The SWITCH / ENDSWITCH operation has the following restrictions:

 Each SWITCH instruction must be accompanied by a separate ENDSWITCH instruction.

 SWITCH / ENDSWITCH functions may be “nested” to a maximum of seven (7) levels deep.

 Each CASE statement must include an integer constant value.

 Any valid Integer Math (IMATH) expression (see Section 4.5.12) may be used with the SWITCH
instruction to determine the result to be processed in CASE / DEFAULT statements.

SWITCH / CASE / ENDSWITCH Example:

Execute different set of instructions based on values of V858-V859 as shown below:

 If (V858 + V859) = 2 set words V3101-V3102 to 222.

 If (V858 + V859) = 6 set words V3501-V3502 to 666.

 If (V858 + V859) = 8 set words V3701-V3702 to 888.

 Otherwise, set error flag (C431 = 1).

0001 C431 := 0

0002 SWITCH V858 + V859

0003 CASE 2

0004 IMATH V3101 := 222

0005 IMATH V3102 := 222

0006 BREAK

0007 CASE 6

0008 IMATH V3501 := 666

0009 IMATH V3502 := 666

0010 BREAK

0011 CASE 8

0012 IMATH V3701 := 888

0013 IMATH V3702 := 888

0014 BREAK

0015 DEFAULT

0016 IMATH C431 := 1

0017 ENDSWITCH

0018 RETURN

Description of operation:

0002 Start of SWITCH statement. Evaluates expression (V858 + V859)

0003 Execution jumps to here if expression result = 2 (Lines 0004-0006 execute)

 Execution jumps to line following ENDSWITCH when BREAK statement

 is encountered.

0007 Execution jumps to here if expression result = 6 (Lines 0008-0010 execute)

0011 Execution jumps to here if expression result = 8 (Lines 0012-0014 execute)

0015 Execution jumps to here if expression result is anything except 2, 6, or 8

 (any result not explicitly listed in CASE statement)

 Line 0016 executes. Note that a BREAK statement is not included here because

 the next line contains an ENDSWITCH statement that terminates the function.

0018 End of SWITCH / ENDSWITCH function.

CTI 2500 Series CPU Programming Reference Manual V1.33 299

 Synchronous Shift Register (SSR)

The SSR instruction functions as a ‘destructive’ word (or bit) based shift register so that each data value
within a designated memory area is shifted into the next higher memory location when it executes. The
data in the highest memory address is shifted-out and lost.

SSR REGISTER START: STATUS BIT:

REGISTER LENGTH:

REGISTER START: Starting Address of Shift Register (Integer, Word.Bit **)

STATUS BIT: SSR Status Bit (C, Y, Tx.y **)

REGISTER LENGTH: Number of elements in Shift Register (Addr/Value - Int)

 ** See Note in Section 3.5.1

Parameter Definitions

 REGISTER START specifies the memory location that serves as starting address for the group of
registers that make up the Shift Register.

Note:
Prior to 2500 Series CPU firmware V6.0, the REGISTER START parameter must be entered as a

Word address. When using firmware V6.0 or later, REGISTER START can also designate a
WORD.BIT address. The address must reside in writeable memory area (V, WY, T).

In this case, the SSR instruction operates as a Bit Shift Register. The REGISTER LENGTH
then specifies the number of bits to be included in the shift register.

 STATUS BIT designates the discrete location used as the Shift Register Status Bit.

 REGISTER LENGTH is the number of Words (or elements) in the Shift Register. REGISTER LENGTH
can be specified as a constant or indirectly via a memory address.

Description of Operation

The SSR instruction executes as described below:

1. The register “type” is determined by REGISTER START address. A Word address designates a
Word Shift Register, and a WORD.BIT address (i.e., V255.1) designates a Bit Shift Register.

2. If the data value of each element in the Shift Register is zero, it is considered empty. If the SSR is
called when the Shift Register is empty, the STATUS BIT is set ON. Otherwise, the STATUS BIT is
turned OFF.

3. A data value is written into the first element in the Shift Register (REGISTER START).

4. When the SSR instruction is called, each value in the Shift Register is shifted into the next
position in the Shift Register (value in position X is moved to X+1). A value of zero is moved into
the REGISTER START address, and the value in the last position in the Shift Register
(REGISTER START + (REGISTER LENGTH-1)) is overwritten and lost.

Note:
The data values in the Shift Register memory area must be initialized before SSR executes.

 The SSR memory and STATUS BIT are not automatically cleared on program startup.

300 CTI 2500 Series CPU Programming Reference Manual V1.33

(1) SSR status after initializing all parameters to zero and executing SSR one time.

 INPUT

 0

 0 V231 STATUS BIT (C68) = ON

 0 V322

 0 V233

 0 V234

(2) First input value is loaded into REGISTER START address. Status before SSR executes:

 INPUT

 2475

 2475 V231 STATUS BIT (C68) = ON

 0 V322

 0 V233

 0 V234

(3) Shift Register status after SSR executes:

 0 V231 STATUS BIT (C68) = OFF

 2475 V322

 0 V233

 0 V234

(4) New input value is loaded into REGISTER START address. Status before SSR executes:

 INPUT

 9766

 9766 V231 STATUS BIT (C68) = OFF

 2475 V322

 0 V233

 0 V234

SSR REGISTER START: V231 STATUS BIT: C68

REGISTER LENGTH: 4

SSR Example:

(5) Shift Register status after SSR executes:

 0 V231 STATUS BIT (C68) = OFF

 9766 V322

 2475 V233

 0 V234

‘

‘
‘

CTI 2500 Series CPU Programming Reference Manual V1.33 301

(9) New input value is loaded into REGISTER START address.

 Shift Register is full at this point. Status before SSR executes:

 INPUT

 3348

 3348 V231 STATUS BIT (C68) = OFF

 12859 V322

 9766 V233

 2475 V234

(10) Results after SSR executes again. All data values are shifted into next higher address..

 Previous value in last Shift Register address (V234) is shifted out and lost.

 INPUT

 0

 0 V231 STATUS BIT (C68) = OFF

 3348 V322

 12859 V233

 9766 V234

(7) New Input value is loaded into REGISTER START address. Status before SSR excutes:

 INPUT

 12859

 12859 V231 STATUS BIT (C68) = OFF

 9766 V322

 2475 V233

 0 V234

(8) Shift Register status after SSR executes again:

 0 V231 STATUS BIT (C68) = OFF

 12859 V322

 9766 V233

 2475 V234

(6) Shift Register status after SSR executes again:

 0 V231 STATUS BIT (C68) = OFF

 9766 V322

 2475 V233

 0 V234

302 CTI 2500 Series CPU Programming Reference Manual V1.33

 Scale Engineering Units to Analog Output (UNSCALE)

The UNSCALE instruction converts a value expressed in engineering units within a specified range to an
integer value within a standard analog range. The input can be designated to be an integer or real
number. A complementary instruction (SCALE) can be used to convert an analog input to engineering
units.

UNSCALE SCALED INPUT: BINARY RESULT::

LOW LIMIT:: HIGH LIMIT::

20% OFFSET: BIPOLAR:

SCALED INPUT: Address of Input in Engineering Units (Integer/Real)

BINARY RESULT: Address where result is written (Integer - Writeable)

LOW LIMIT: Low Limit of Input in Engr Units (Integer/Real Constant)

HIGH LIMIT: High Limit of Input in Engr Units (Integer/Real Constant)

20% OFFSET: Specifies 20% Offset for Output Range (YES / NO)

BIPOLAR: Specifies Bipolar Output Range (YES / NO)

Parameter Definitions

 SCALED INPUT designates the memory address for input value expressed in engineering units. The
address can specify an integer or real number (when address is followed by a period (.)).

 BINARY RESULT designates the integer memory address where the UNSCALE result is written.

 LOW LIMIT is the low end (0%) of the range used for UNSCALE input. This value must be entered
as an integer or real number constant value.

 HIGH LIMIT is the high end (100%) of the range used for UNSCALE input. This value must be
entered as an integer or real number constant value.

 20% OFFSET indicates an analog range where the BINARY OUTPUT includes a 20% offset (such as
1-5V or 4-20mA analog range). Enter ‘YES’ to specify an output range with 20% offset.

 BIPOLAR indicates an analog range where the BINARY OUTPUT corresponds to a bipolar range
(such as -5-to-+5V analog range). Enter ‘YES’ to specify a bipolar output range.

Note:
It is not permitted to set both 20% OFFSET and BIPOLAR selections to ‘YES’ since that would

define an invalid analog range.

CTI 2500 Series CPU Programming Reference Manual V1.33 303

Description of Operation

Each time the UNSCALE instruction is called

1. The analog output range is determined based on UNSCALE parameters:

 Output Range = 0-to-+32000 when both 20% OFFSET = ‘NO’ and BIPOLAR = ‘NO’

 Output Range = +6400–to-+ 32000 when 20% OFFSET = ‘YES’

 Output Range = -32000-to-+32000 when BIPOLAR = ‘YES’

2. The percentage of input (0-100%) is calculated based on the SCALED INPUT value within the range
of engineering units defined by LOW / HIGH LIMITS and converted to the equivalent percentage for
the appropriate analog output range.

3. If the SCALED INPUT is a real number, the LOW / HIGH LIMITS can fall within the following ranges:

 5.42101 E-20 to 9.22337 E+19 (for positive real number)

 -9.22337 E+18 to -2.71051 E-20 (for negative real number)

4. The converted value is an integer written to the memory address specified in BINARY RESULT.

Input: V188. = -1.74292

Result: WY34 = -11155

UNSCALE Calculation

Analog Range = -32000-to-+32000 (because BIPOLAR = ‘YES’)

Percentage of Input = ((-1.74292) - (-5.0)) / (5.0 - (-5.0)) = 32.5708%

Binary Result = ((32000 - (-32000)) * .325708 - 32000) = -11155

UNSCALE Example:

UNSCALE SCALED INPUT: V188. BINARY RESULT: WY34

LOW LIMIT:: -5.0 HIGH LIMIT:: 5.0

20% OFFSET: NO BIPOLAR: YES

304 CTI 2500 Series CPU Programming Reference Manual V1.33

 Conditional Looping - WHILE / ENDWHILE

The WHILE and ENDWHILE instructions are used together to repetitively execute a group of instructions
until a specified event occurs.

Note:

This feature is available only when using 2500 Series CPU firmware V6.0 or later
and 505 WorkShop V4.50 or later as PLC programming software.

WHILE << Arithmetic/Logical Expression >>

<< SF instruction >>

…

<< SF Instruction >>

ENDWHILE

 << Arithmetic/Logical Expression >> = Any valid integer-only (IMATH) Expression

Description of Operation

When the WHILE instruction is called, the associated IMATH expression is evaluated. If the result is zero
(FALSE), then execution jumps to first instruction after ENDWHILE. If the result is non-zero (TRUE), then
execution continues to next statement following the WHILE instruction. When ENDWHILE is found,
execution jumps back to the last WHILE instruction and process repeats.

There is no limit to the number or type of SF statements that can be executed within the WHILE /
ENDWHILE loop.

The WHILE / ENDWHILE operation has the following requirements:

 Each WHILE instruction must be accompanied by a separate ENDWHILE instruction.

 WHILE / ENDWHILE loops may be “nested” within other WHILE / ENDWHILE loops to a
maximum of four (4) levels deep.

 Any valid Integer Math (IMATH) expression (see Section 4.5.12) may be used with the WHILE
instruction as the condition to execute the embedded statements

CTI 2500 Series CPU Programming Reference Manual V1.33 305

WHILE / ENDWHILE Example:

Look thru a table of words of random length starting at V211.

Report ‘Table Position’ of first word that has a value = 0.

0001 IMATH T11 := 0

0002 IMATH T12 := 0

0003 WHILE T11 = 0 AND T12 < V339

0004 IMATH T12 := T12 + 1

0005 IF V211(T12) = 0

0006 IMATH T11 := 1

0007 ENDIF

0008 ENDWHILE

0009 IF T11 = 0

0010 IMATH T12 = 0

0011 ENDIF

Description of operation:

0001-0002 Initialize values for WHILE loop

0003 Start of WHILE loop.

 V339 contains ‘Number of Words in Table’ to be searched.

0004 Increments ‘Table Position’ Pointer (T12)

0005-0007 Evaluate selected word in Table (using ‘Table Position’ as index)

 Set Flag (T11) if word value = 0

0008 End of WHILE loop.

 Program execution jumps to WHILE instruction and expression is re-evaluated.

 If Flag set (word value = 0 found) or ‘Number of Words in Table’ has been

 reached, WHILE loop is terminated and execution jumps to statement following

 ENDWHILE (Line 0009). Otherwise, WHILE loop operation is repeated.

0009-0011 Table Position where value = 0 found is stored in V274.

 If word value = 0 is not found in Table, V274 is set = 0.

306 CTI 2500 Series CPU Programming Reference Manual V1.33

4.6 SF Program/Subroutine Data Variables

Special Function Variables associated with the operation of Analog Alarms, PID Loops, and PLC
operation can be accessed only within SF Programs and Subroutines and by HMIs connected to the PLC.
The following table provides a list of all supported data types (eu = engineering units).

Mnemonic Description Units Real

Integer

Read
Only

Notes

AACK Alarm Acknowledge Flags X O

AADB Analog Alarm Deadband eu X X A,B,H

ACFH Alarm C Flag High X A

ACFL Alarm C Flag Low X A

AERR Alarm Error eu X X X C

AHA Alarm High Limit eu X X A,B,H

AHHA Alarm High-High Limit eu X X A,B,H

ALA Alarm Low Limit eu X X A,B,H

ALLA Alarm Low-Low Limit eu X X A,B,H

AODA Alarm Orange Deviation Limit eu X X A,B,H

APV Alarm Process Variable eu X X B

APVH Alarm Process Variable High Limit eu X A, G

APVL Alarm Process Variable Low Limit eu X A, G

ARCA Alarm Rate of Change Alarm Limit eu/min X A, G

ASP Alarm Setpoint eu X X B, H

ASPH Alarm Setpoint High eu X X A,B,H

ASPL Alarm Setpoint Low eu X X A,B,H

ATS Alarm Sample Rate (seconds) sec X A

AVF Alarm V Flag X I

AYDA Alarm Yellow Deviation Limit eu X X A,B,H

APET Alarm Peak Elapsed Time ms X X P

LACK Loop Alarm Acknowledge Flags X O

LADB Loop Alarm Deadband eu X X A,B,H

LCFH Loop C Flag High X A

LCFL Loop C Flag Low X A

LERR Loop Error eu X X X C

LHA Loop High Alarm Limit eu X X A,B,H

LHHA Loop High-High Alarm Limit eu X X A,B,H

LKC Loop Gain % X

LKD Loop Derivative Gain Limiting
Coefficient

 X

LLA Loop Low Alarm Limit eu X X A,B,H

LLLA Loop Low-Low Alarm Limit eu X X A,B,H

LMN Loop Output % X X J

LMX Loop Bias % X X K

LODA Loop Orange Deviation Alarm Limit eu X X A,B,H

LPV Loop Process Variable eu X X B

LPVH Loop Process Variable High Limit eu X A,G

CTI 2500 Series CPU Programming Reference Manual V1.33 307

Mnemonic Description Units Real

Integer

Read
Only

Notes

LPVL Loop Process Variable Low Limit eu X A,G

LRCA Loop Rate of Change Alarm Limit eu/min X A,H

LRSF Loop Ramp Soak Flags X I

LRSN Loop Ramp Soak Number X N

LSP Loop Setpoint eu X X B,H

LSPH Loop Setpoint High Limit eu X X A,B,H

LSPL Loop Setpoint Low Limit eu X X A,B,H

LTD Loop Rate Time (min) min X

LTI Loop Reset Time (min) min X

LTS Loop Sample Rate (sec) sec X A

LVF Loop V Flags X I

LYDA Loop Yellow Deviation Alarm Limit eu X X A,B,H

LPET Loop Peak Elapsed Time ms X X P

P SF Subroutine Parameters X X E,F

SFEC SF Error Code X X D, L

PPET SF Program Peak Elapsed Time
NOTE: PPET is valid only for SF
programs queued from RLL.

ms X X P

SPET SF Subroutine Peak Elapsed Time
NOTE: SPET is valid only for SF
programs queued from RLL.

ms X X P

K Constant Memory X X X

T Temporary Memory X X D

TPET RLL Peak Elapsed Time ms X X P

X Discrete Input X X N

Y Discrete Output X N

C Control Relay X N

DCP Drum Count Preset X

DSP Drum Step Preset X

DCC Drum Count Current X X

DSC Drum Step Current X

TCP Timer Counter Preset X

TCC Timer Counter Current X X

V V Memory x x

WX Word Input x x X

WY Word Output x x

308 CTI 2500 Series CPU Programming Reference Manual V1.33

NOTES:

A. This variable is read-only if Flash is selected as the program source.

B. When accessed as an integer, value returned is an integer between 0 and 32000. When
accessed as a real, the value is returned in engineering units between the low limit and the
high limit.

C. When accessed as an integer, value returned is a scaled integer between -32000 and
32000. When accessed as a real, the value is returned in engineering units between -span
and + span.

D. This variable can be accessed only in an SF program or SF subroutine.

E. This variable can be accessed only in an SF subroutine.

F. The access restrictions depend on the type of variable passed to the subroutine.

G. If PVLn is changed to a value greater than PVHn, then PVHn is set to the new PVLn.

If PVHn is changed to a value less than PVLn, then PVLn is set to the new PVHn.

H. If PVLn or PVHn is modified and the current value of any of these variables is outside the
new PV range, the value clamps to the nearest endpoint of the new PV range.

I. When written, only the control bits are actually modified. When read, only the status bits
are returned, the control bits are returned as 0.

J. The value is dependent on the PID algorithm in use:

 Position: The value is a percent between 0.0 and 1.0, if accessed as a real, or a
number between 0 and 32000, if accessed as an integer.

 Velocity: The value is a percent-of-change between -1.0 and 1.0 is accessed as a
real, or -32000 and 32000 if accessed as an integer.

K. These values are invalid if the Velocity PID algorithm is being used.

L. The value written to SFEC must range from 0-255. Writing a non-zero value will cause the
program to terminate, unless “Continue on Error” is selected in the SF program,

M. LRSN is valid only if the loop is in Auto and ramp/soak for that loop is enabled. Error 39 is
returned if the step is not programmed. If the loop is programmed, the loop exits the current
step and enters the specified step. Writing a value larger than the number of the last
programmed ramp/soak step to LRSN completes the ramp/soak and sets the ramp/soak
finish bit.

N. When reading a discrete point, a zero is returned if the bit is off and a 1 if the bit is on.
When writing to a discrete point, a value of 0 turns off the bit and a value of 1 turns on the
bit.

O. Bit format for AACK and LACK is shown in Appendix B.

P. APET, LPET, and SPET contain the time from which the process is scheduled until the
process completes execution. TPET contains the peak elapsed time of an RLL task.
TPET1 is the main RLL task; TPET2 is the cyclic RLL task. These variables can be read
only by HMI devices connected to the controller.

CTI 2500 Series CPU Programming Reference Manual V1.33 309

4.7 SF Program/Subroutine Error Codes

The following error codes can be generated by SF Programs and SF Subroutines while executing and
reported in the Special Function Error Code (SFEC) variable if specified during program development.

Error Code
Description

Dec Hex

2 02 Address out of range

3 03 Requested data not found

9 09 Incorrect amount of data sent with request

17 11 Statement contains invalid data

64 40 Operating System error detected

66 42 Control block number out of range

67 43 Control block does not exist

70 46 Offset out of range

71 47 Arithmetic error detected while writing Loop or Alarm parameters

72 48 Invalid SF program type

73 49 Instruction number or Ramp/Soak step number out of range

74 4A Attempt to access an integer-only variable as a real number

75 4B Attempt to access a real-only variable as an integer

78 4E Attempt to write read-only variable (X, WX, K, STW)

79 4F Invalid variable data type

82 52 Invalid return value

83 53
Attempt to execute the LEAD/LAG instruction in non-cyclic SF
program

84 54 Attempt to execute a disabled Control block

86 56 Attempt to execute FTRS-OUT instruction on empty FIFO

87 57 Attempt to execute FTRS-IN instruction on full FIFO

88 58 Stack overflow while evaluating a MATH, IMATH, or IF expression

89 59 Maximum SFSUB nesting level exceeded (max depth = 4)

90 5A Arithmetic overflow

91 5B Invalid operator within an MATH, IMATH, or IF expression

93 5D Attempt to divide by zero within IMATH expression

94 5E FIFO is incompatible with FTSR-IN / FTSR-OUT instruction

95 5F FIFO is invalid

96 60
Invalid data type (usually caused by addressing error within a MATH,
IMATH or IF expression)

CTI 2500 Series CPU Programming Reference Manual V1.33 311

CHAPTER 5 ANALOG ALARMS

5.1 Overview

Analog Alarms allow you to the monitor the Process Variable (PV) and to set an alarm bit if the PV is
outside designated boundaries.

The number of analog alarms supported by the CTI 2500 controller depends on the controller model.
See the CTI 2500 Installation and Operation Guide for the number of alarms that can be programmed
for your controller model. The alarm tasks execute within the Analog Alarm time slice.

Each analog alarm provides three types of alarms:

 Absolute alarms, which compare the PV to a designated value

 Deviation alarms, which compare the PV to the Setpoint

 Rate of change alarms, which compare the rate at which the PV is changing to a target value.

You may choose to use all of these alarms types, if desired.

Analog alarms are programmed by entering values for each of the parameters as described in the
following section:

5.2 Alarm Parameters

The following table provides a brief description of each alarm parameter. The parameters are
explained in more detail following the table.

Variable Description

Analog Alarm Title Assigns a name to the alarm

Analog Alarm V-Flag
Address

Designates the address of the Alarm V Flag. The Alarm V flag
is a set of bits that control the alarm and provide alarm status.
NONE indicates that the alarm V flag is not stored.

Sample Rate Selects how often the alarm evaluation is performed. The
Sample Rate is programmable in 0.1 second intervals. The
value is entered as a positive Real number.

PV Address

Selects the source of the Process Variable (PV).
NONE indicates that the PV value will be written directly to the
alarm variable (APV).

PV Range Low Sets the low range of the PV (in engineering units)

PV Range High Sets the high range of the PV (in engineering units)

PV Bipolar Specifies whether the Process Variable is bipolar or unipolar.
Bipolar PV ranges from -32000 to +32000.

PV 20 % Offset Specifies whether the analog signal value representing the PV
is offset by 20% (uses a 4–20 ma current loop).

Square Root of PV Specifies whether to use the square root of the PV signal

Monitor Low-Low/High High Designates whether these alarms will be monitored

Monitor Low/High Designates whether these alarms will be monitored

PV Alarms: Low-Low Specifies the Low-Low Alarm Value in engineering units

PV Alarms: Low Specifies Low Alarm Value in engineering units

312 CTI 2500 Series CPU Programming Reference Manual V1.33

Variable Description

PV Alarms: High Specifies High alarm limit in engineering units

PV Alarms: High-High Specifies High-High alarm limit in engineering units

Monitor Remote Setpoint Designates whether the Remote Setpoint will be monitored.

Remote Setpoint Specifies the address of the Remote Setpoint, if used. If NONE
is selected, the alarm uses the current value in ASP.

Clamp SP Limit Low Specifies minimum Setpoint value allowed. A Setpoint value
below this value will be clamped to this limit

Clamp SP Limit High Specifies the maximum Setpoint value allowed. A Setpoint
value above this value will be clamped to this limit

Alarm Deadband Specifies the Deadband value in engineering units. Deviations
within the Deadband will not activate the alarm.

Special Function Specifies the number of SF Program to be called from the
Alarm. NONE indicates no SF Program will be called.

Monitor Deviation Alarms Enables alarm monitoring of deviation limits specified for
difference between SP and PV

Deviation Yellow Alarm Specifies the Yellow Deviation alarm limit in engineering units.

Deviation Orange Alarm Specifies the Orange Deviation alarm limit in engineering units.

Monitor Rate of Change Enables monitoring of the Rate of Change for PV signal

Rate of Change Alarm Specifies Rate of Change alarm limit in engineering units.

Monitor Broken Transmitter Enables alarm generated when the PV signal is detected
outside of the expected range

 Alarm Title

You enter the name or description for the Alarm in this field. Names can be up to 8 characters long.

 Alarm V-Flag Address

This field is used to assign the address for Alarm V-Flag data. The Alarm V-Flag data is a set of 12
bits used to control the operation of the Analog Alarm and report alarm conditions. It can be mapped
to the C or Y discrete memory area (11 consecutive bits) or word memory (uses bits 1-12). See the
table below.

Bit Description

1 When set, enables alarm

2 When set, disables alarm

3 When set, High-High alarm is active

4 When set, High alarm is active

5 When set, Low alarm is active

6 When set, Low-Low alarm is active

7 When set, Yellow Deviation alarm is active

8 When set, Orange Deviation alarm is active

9 When set, Rate of Change alarm is active

10 When set, Broken Transmitter alarm is active

11 When set, alarm is overrunning

12 When set, alarm is enabled
This bit is not used if the V flag address is C or Y.

13-16 Not used

CTI 2500 Series CPU Programming Reference Manual V1.33 313

 Sample Rate

This parameter determines how often the alarm evaluation is performed. The minimum value is 0.1
seconds (100 ms), and Sample Rate can be entered in 0.1 second intervals.

Regardless of the Sample Rate entered, the alarms will be evaluated at least once every two
seconds. Therefore, the Sample Rate is normally specified between 0.1 and 2.0 seconds.

 Process Variable Address (V, WX, WY, None)

This parameter designates the memory address that contains the Process Variable feedback to the
loop. It is usually a WX address associated with an analog input channel. The input range is expected
to be between 0-32000 for a standard unipolar (i.e. 0-5V) signal. If NONE is specified, the Process
Variable value must be written directly to the SF alarm variable (APV).

 PV Range Low/High (in Engr Units)

The PROCESS VARIABLE can also be expressed as a Real number in engineering units. The PV Low
Range represents the value when the analog input signal is at its minimum. The PV High Range
represents the value when the input signal is at its maximum. The PV 20% OFFSET and PV BIPOLAR
features are automatically integrated into the PV engineering units when selected.

 PV is Bipolar (Yes/No)

This refers to the actual PROCESS VARIABLE input to the loop. If a Bipolar input signal (i.e., -5 to +5V)
is used, answer YES. The input range is then set to -32000 to +32000.

 20% Offset on PV (Yes/No)

Answer YES when the analog input has a 20% Offset for the “zero” range position, used with signals
such as 1-5V or 4-20mA. When active, the range of the PV integer value is 6400–32000.

NOTE: It is invalid to select both Bipolar and 20% Offset for the same analog signal.

 Square Root of PV (Yes/No)

Some devices provide a signal that is the square of the actual measurement. This calculation will
compensate for this characteristic. Answer YES only if the actual PROCESS VARIABLE input represents
the square of the measured input (i.e., differential pressure flow measurement).

 Monitor Absolute Alarms (Yes/No)

The selection of Monitor Low-Low / High-High and Monitor Low / High enable alarms generated
by comparing the PV to fixed values. Either pair of alarms may be used independently. Both pairs are
used when one pair (High/Low) indicates a warning while the other pair (High-High/Low/Low
signals a critical condition.

314 CTI 2500 Series CPU Programming Reference Manual V1.33

 Absolute Alarm Limits (in Engr Units)

The values for the absolute alarm limits are entered when the corresponding alarm pair is selected.
These values are specified in engineering units as follows:

 The value for the High-High alarm must be less than or equal to the PV HIGH RANGE value.

 The value for the High alarm must be less than or equal to the High-High alarm,

 The value for the Low alarm must be less than or equal to the High alarm,

 The value for the Low-Low alarm must be less than or equal to the Low alarm and greater
than or equal to the PV LOW RANGE value.

 Monitor Remote Setpoint (Yes/No)

When Monitor Remote SP is set to YES, the alarm will obtain the SETPOINT value from the address
entered in the REMOTE SETPOINT field. A value of NONE indicates that there is no REMOTE SETPOINT
used by the Alarm. In this case, the SETPOINT value (if needed) must be written by Special Function
program or HMI using the ASP variable.

 Remote Setpoint (V, K, WX, WY, None)

The Remote SP field is applicable only when Monitor Remote SP is selected. This field specifies the
memory location containing the SETPOINT value. The integer value of Remote Setpoint is always
scaled for the normal unipolar range of 0-32000. The SETPOINT value can also be accessed as Real
number in engineering units according to the range specified by PV LOW and PV HIGH limits.

 Clamp Setpoint Low/High (in Engr Units)

The Clamp SP Low and Clamp SP High fields designate the minimum and maximum limits for the
SETPOINT value. The values entered are treated in engineering units and must be within limits
specified for PV LOW and PV HIGH. An attempt to force the SETPOINT outside these limits will result in
the SP value being clamped to nearest limit. For instance, with SP limits set to 10 and 90, a SP input
of 5 is changed to a value of 10 and a SP input of 95 is changed to a value of 90.

The Clamp Setpoint function is disabled if both SP LOW and SP HIGH limits are set to the same
value.

 Alarm Deadband (in Engr Units)

The Alarm Deadband field allows the user to set an area around the alarm points to prevent
nuisance alarms caused by PV value ‘chattering’ near an alarm limit. If specified, it provides a “neutral
zone” for all alarms except for RATE OF CHANGE alarm. The Alarm Deadband delays the point at
which an alarm condition is set and/or cleared. A typical Deadband normally ranges from 0.25% to
5% of span.

For example, assume a PV RANGE of 0-100, PV LOW LIMIT = 20, and a DEADBAND = 2. When PV drops
from 21 to 20, PV LOW alarm is activated. The PV LOW alarm is not cleared until PV signal rises to 22.

CTI 2500 Series CPU Programming Reference Manual V1.33 315

 Special Function

This field designates the number of the Special Function Program that will be called by the alarm
function. The SF Program can be designated as NORMAL, PRIORITY, or RESTRICTED type.

The Special Function Program is called immediately each time before the alarm executes when the
SAMPLE RATE is set to 2.0 seconds or less. When the SAMPLE RATE is greater than two seconds, the
SF Program is called only at the SAMPLE RATE interval.

 Deviation Alarms (Yes/No)

When Monitor Deviation is set to YES, alarm monitoring is enabled for Deviation limits on the
difference between SETPOINT and PV. When enabled, both Yellow Deviation and Orange Deviation
alarms are enabled.

The Yellow Deviation and Orange Deviation alarms compute the ERROR (SP – PV) and activate
when that ERROR exceeds the specified limits. The Yellow Deviation is considered the first level
alarm, and the Orange Deviation is considered the critical alarm. The values for both alarms are
entered in Engineering Units as follows:

 The Orange Deviation value must be less than the PV RANGE in Engineering Units (PV

RANGE HIGH – PV RANGE LOW) and greater than or equal to the Yellow Deviation alarm limit.

 The Yellow Deviation value must be greater than or equal to zero and less than or equal to
the Orange Deviation alarm limit.

 Rate of Change Alarm Limit (in Engr Units per Minute)

When MONITOR CHANGE is set to YES, alarm monitoring is enabled for Rate of Change of the
PROCESS VARIABLE input signal.

The Rate of Change Alarm is applicable only when Monitor Change is selected. The Rate of
Change Alarm is set when the analog input value changes faster than the limit specified by the
designated amount. The RATE OF CHANGE limit is entered in engineering units per minute. For
example, for a PV Range = 0-100, an entry of 120 equates to a Rate of Change Alarm limit of 2 units

per second.

 Broken Transmitter Alarm (Yes/No)

When Monitor Broken Xmit is set to YES, an alarm is generated when the integer value of the
Process Variable signal is detected outside of the expected PV range as noted below:

 NO OFFSET: 0 – 32000

 20% OFFSEt: 6400 – 32000

 BIPOLAR: -32000 to +32000

If an ALARM DEADBAND is specified, that value is added to the limits that activate this alarm. For
instance, the Broken Transmitter Alarm occurs when a 20% OFFSET signal is read outside the range
of 6400-32000 when no DEADBAND is used. However, a DEADBAND value of 5% expands the
acceptable input range by 1280 counts on both end of the scale (5120-33280).

316 CTI 2500 Series CPU Programming Reference Manual V1.33

5.3 Alarm Configuration Flags (ACFH and ACFL)

The Alarm Configuration Flags (C-FLAGS) are used to monitor and set the Alarm configuration
parameters. The programmer is actually setting these flags when the Alarm parameters are entered
as described in the previous section. The Alarm Configuration Flags are accessed via two Special
Function variables ACFH (most significant word) and ACFL.

Variable Bit Description

ACFH

1
0 = 0% Offset for PV
1 = 20% Offset for PV (valid only if PV is Unipolar. See ACFL Bit 5)

2 1 = Enable square root of PV calculation

3 1 = Monitor High and Low alarms

4 1 = Monitor High-High and Low-Low alarms

5 1 = Monitor Yellow and Orange Deviation alarms

6 1 = Monitor Rate-of-Change alarm

7 1 = Monitor Broken Transmitter alarm

8
0 = Use Local Setpoint
1 = Use Remote Setpoint

9-16 Unused

ACFL

1–4 Unused

5
0 = PV is Unipolar
1 = PV is Bipolar

6 Unused

7-16 Contains number of SF Program to be called

CTI 2500 Series CPU Programming Reference Manual V1.33 317

5.4 Alarm Status Flags (AVF)

The Alarm Status Flags (V-FLAGS) are used to Enable/Disable the Alarm and monitor the status of
the alarm operation. These flags can be accessed by SF Programs using the Special Function
variable AVF or RLL program when they are “mirrored” to a writeable Word (V or WY) address (V or
WY) or consecutive Bit (C or Y) addresses via ALARM CONFIGURATION.

Bit Description

1 When set, enables alarm

2 When set, disables alarm

3 When set, High-High alarm is active

4 When set, High alarm is active

5 When set, Low alarm is active

6 When set, Low-Low alarm is active

7 When set, Yellow Deviation alarm is active

8 When set, Orange Deviation alarm is active

9 When set, Rate of Change alarm is active

10 When set, Broken Transmitter alarm is active

11 When set, alarm is overrunning

12 When set, alarm is enabled
This bit is not used if the V flag address is C or Y.

13-16 Not used

318 CTI 2500 Series CPU Programming Reference Manual V1.33

5.5 Alarm Acknowledgement Flags (AACK)

The Alarm Acknowledgement Flags allow you to monitor and acknowledge critical alarms. An
alarm can be acknowledged only if it is active (in alarm state as reported in bits 1-4) and currently
unacknowledged (as reported in bits 9-12).

Alarms can be acknowledged by writing a ‘1’ to the appropriate bit (bits 9-12). The PLC will then clear
that bit to indicate the alarm acknowledgement.

For instance, when both Bit 2 and Bit 10 are ON indicating an active and unacknowledged RATE OF

CHANGE alarm, you can write a ‘1’ to Bit 10 to acknowledge that alarm. The controller then sets Bit 10
to zero to indicate the RATE OF CHANGE alarm is acknowledged.

Bit Alarm Condition

1 1 = PV is in Broken Transmitter alarm

2 1 = PV is in Rate-of-Change alarm

3 1 = PV is in High-High and Low-Low alarm

4 1 = PV is in Orange Deviation alarm

5 Unused

6 Unused

7 Unused

8 Unused

9 1 = Broken Transmitter alarm is unacknowledged

10 1 = Rate-of-Change alarm is unacknowledged

11 1 = High-High or Low-Low alarm is unacknowledged

12 1 = Orange Deviation alarm is unacknowledged

13 Unused

14 Unused

15 Unused

16 Unused

CTI 2500 Series CPU Programming Reference Manual V1.33 319

CHAPTER 6 ANALOG (PID) LOOPS

6.1 Overview

Analog Loops (also called PID loops) are used to control a process by measuring the PROCESS

VARIABLE (PV), comparing it to a SETPOINT (SP) , and computing a control OUTPUT intended to bring
the difference (or ERROR) between the PV and SP to 0.

Loops 1–128 operate as cyclical (time scheduled) loops. These loops run in the Analog Lop time
slice. Loops 129–512 must be called from RLL using the PID instruction. These loops, also called
“Fast Loops”, execute during the RLL portion of the scan. All loops use the same PID algorithms and
provide integrated analog alarms. The only limitation of “Fast Loops” is that Ramp/Soak feature is not
available.

Analog loops are programmed by entering values for each of the loop parameters as described in the
following section.

6.2 Loop Modes of Operation

PID Loops can operate in the following modes:

Manual The LOOP OUTPUT is controlled by the operator. While in MANUAL mode, the loop
monitors all active alarms associated with PV (except the YELLOW / ORANGE

DEVIATION alarms).

Auto The controller calculates the LOOP OUTPUT based on the LOOP PARAMETER settings.
The SETPOINT value may be controlled by an operator interface, an SF PROGRAM,
or a RAMP/SOAK table. All active alarms are monitored.

Cascade CASCADE mode is a configuration where the OUTPUT of one (“outer”) loop is used as
the SETPOINT for another (“inner”) loop. The controller computes the OUTPUT for the
“inner” loop. The SETPOINT for the “inner” loop is obtained from the memory location
specified for REMOTE SETPOINT address.

While in CASCADE mode, the loop operation is identical to AUTO mode with the
addition of the mode management of the associated loops, if they exist. When the
“inner” loop is switched out of CASCADE, then all associated outer loops are placed
in MANUAL mode to prevent reset windup. A request to place an “outer” loop into
AUTO or CASCADE mode is denied unless its inner loop is in CASCADE mode. The
number of cascaded loops is unlimited.

The PLC requires that the loop be placed in CASCADE mode in order to use the
REMOTE SETPOINT parameter. Therefore it is possible to setup a virtual CASCADE
loop when this feature is desired.

Stopped In effect when the PLC ANALOG SCAN IS set to PROGRAM mode or disabled.

320 CTI 2500 Series CPU Programming Reference Manual V1.33

6.3 Loop Parameters

The following table provides a brief description of each loop parameter. The parameters are
explained in more detail following the table.

Variable Description

Loop Title Assigns a name or description for the loop

PID Algorithm Selects PID algorithm used for Loop Output calculation

Loop V Flag Address Designates the address of the Alarm V-Flag data for control of
loop operation and alarm status.

Sample Rate Selects how often the loop function executes.

PV Address Selects the source for the Process Variable.

PV Range High/Low Sets the High/Low range limits for PV in Engineering Units

PV is Bipolar Selects a bipolar range for the PV signal

20% Offset on PV Selects an analog range with 20% offset for PV (4–20mA
signal).

Square Root of PV Calculates PV as the square root of the analog signal for PV

Loop Output Address Specifies the memory location where Loop Output will be written.

Output is Bipolar Specifies whether the Loop Output signal is bipolar

20% Offset in Output Specifies whether the analog signal representing the Loop
Output is offset by 20% (i.e., a 4–20mA signal).

Ramp/Soak for SP Enables operation of the Ramp/Soak function according to the
programmed steps when loop mode transitions to AUTO.

Remote SP Specifies source for the Loop Setpoint.

Monitor Low-Low/High-High Enables monitoring of Low-Low and High-High absolute alarms

Monitor Low/High Enables monitoring of Low and High absolute alarms

PV Alarms: Low-Low Specifies Low-Low alarm value in Engineering Units

PV Alarms: Low Specifies Low alarm value in Engineering Units

PV Alarms: High Specifies High alarm value in Engineering Units

PV Alarms: High-High Specifies High-High alarm value in Engineering Units

Remote SP Specifies the memory address used for loop Setpoint. NONE
indicates the SP value must be written to loop variable LSP.

Clamp SP Limits Low:
Clamp SP Limits High:

Designates minimum and maximum values (in Engineering
Units) that are permitted for Loop Setpoint

Loop Gain Sets the Proportional Gain for the loop. This value also serves
as overall Gain multiplier (Kc)

Loop Reset Specifies the Reset Time used to compute the Integral Gain (Ki)
for the loop

Loop Rate Specifies the Rate Time used to compute the Derivative Gain
(Kr) for the loop

Freeze Bias Determines method used to manage Loop Bias when the loop
Output calculation is out of range

Derivative Gain Limiting Enables a filter to be used for the Derivative component of the
loop Output calculation

Limiting Coefficient Designates Limiting Coefficient for Rate limiting filter

Alarm Deadband Specifies the Deadband value in Engineering Units. Deviations
within the Deadband will not activate the alarm

Special Calculation On Determines scheduling of a Special Function Program called
from the loop. NONE indicates that no SF Program will be
called.

CTI 2500 Series CPU Programming Reference Manual V1.33 321

Variable Description

Special Function Specifies the number of Special Function Program to be called
when loop is executed

Lock Setpoint
Lock Auto/Manual
Lock Cascade

Sets corresponding bits in C-Flag register to indicate “locked”
state. The HMI must read the register value and enforce lock.

Error Operation (None,
Squared, Deadband)

Specifies method used to calculate the Loop Error term used by
the loop algorithm

Reverse Acting Selects the direction of the controller response to Loop Error

Monitor Deviation Alarm Enables monitoring on Yellow/Orange Deviation limits specified
for the Loop Error

Deviation Alarm Yellow Specifies the Yellow Deviation alarm limit in Engineering Units

Deviation Alarm Orange Specifies the Orange Deviation alarm limit in Engineering Units

Monitor Rate of Change Enables monitoring of the Rate of Change for the PV signal

Rate of Change Alarm Specifies Rate of Change alarm limit in Engineering Units

Monitor Broken Transmitter Enables alarm generated when the PV signal is detected outside
of the expected range

 Loop Title

Enter the name or description for the loop in this field. Names can be up to 8 characters long.

 PID Algorithm (Position/Velocity)

This parameter specifies the type of algorithm used in the loop calculation. You may choose either
the Position or the Velocity algorithm.

The Position algorithm calculates the position of a device based on the Error. The Position
algorithm provides a constant signal to field device and is used with most common analog actuators.
This selection is used in 99% of the process control loops.

The Velocity algorithm calculates the change in device position based on the change in LOOP ERROR
and generates a value indicating the direction and distance to move from the current position.
Stepper motor devices and positioning systems typically require this algorithm. The LOOP OUTPUT is
set to the difference in the calculated OUTPUT (between current and last loop computations) each time
the loop algorithm is executed and equals zero when the calculated OUTPUT remains constant.

322 CTI 2500 Series CPU Programming Reference Manual V1.33

 Loop V-Flag Address (None, C, Y, V, WY)

The V-Flag Address assigns the address for LOOP V-FLAG data. The LOOP V-FLAG data is a set of 15
bits used to control the operation of the loop and report the loop mode and alarm conditions. It can be
mapped to any writable discrete (15 consecutive bits) or word memory (bits 1-15 of single word) area.

 Sample Rate (in Seconds)

The Sample Rate determines how often the loop calculation is performed. The parameter value can
be set in increments of 0.1 seconds (100 ms). You should set the Sample Rate based on the process
requirements. Setting the value too small can increase PLC scan time and/or cause loops to overrun
(scheduled before the previous calculation has completed). Setting the value too large can prevent
the process from being controlled correctly. For example, temperature loops using thermocouples
whose time constant is measured in seconds, perform correctly with a Sample Rate of 4-5 seconds.

 PV Address (None, V, WX, WY)

The PV Address designates the memory address that contains the Process Variable feedback to
the loop. It is usually a WX address mapped to an analog input channel or internal V-memory
address. The value is expected to be an integer in the range of 0-32000, 6400-32000 if 20% OFFSET
is used, or -32000 to +32000 for BIPOLAR signals.

Bit Description

1 Sets loop mode to Manual (when = 1)

2 Sets loop mode to Auto (when = 1)

3 Sets loop mode to Cascade (when = 1)

4 - 5 Reports loop mode

4 5
0 0 Manual mode
1 0 Auto mode
0 1 Cascade mode

6 Error is zero or positive (when = 0)
Error is negative (when = 1)

7 PV High-High alarm is active (when = 1)

8 PV High alarm is active (when = 1)

9 PV Low alarm is active (when = 1)

10 PV Low-Low alarm is active (when = 1)

11 Yellow Deviation alarm is active (when = 1)

12 Orange Deviation alarm is active (when = 1)

13 PV Rate of Change alarm is active (when = 1)

14 PV Broken Transmitter alarm is active (when = 1)

15 Loop is overrunning (when = 1)

16 Unused

CTI 2500 Series CPU Programming Reference Manual V1.33 323

 PV Range (Low/High)

The PROCESS VARIABLE can also be expressed as a Real number in engineering units. The PV Low
Range represents the value when the input signal is at its minimum. The PV High Range represents
the value when the input signal is at its maximum. The PV 20% OFFSET and PV BIPOLAR features are
automatically integrated into the PV engineering units when selected.

Caution:

It is an invalid case to set the PV Low Range and PV High Range to the same values.
WorkShop and TISOFT prohibit this setting during Loop configuration. However, it is
possible to change these values via HMI to create invalid Loop parameter settings.

If PV Low Range is set equal to the PV High Range (LPVL = LPVH) during run-time,
an error is detected in the associated PID calculation and the Loop Output is held at
the previous calculated value. This will occur until a valid PV Range (LPVL < LPVH)

is entered when the Loop will resume normal operation.

 PV Bipolar (Yes/No)

Select YES when the PROCESS VARIABLE is converted into a Bipolar analog signal, (-10 to +10V).
When active, the range of the PROCESS VARIABLE integer value is -32000 to +32000.

 20% Offset on PV (Yes/No)

Select YES when the PROCESS VARIABLE is an analog signal with a 20% Offset for the “zero” range
position, (1-5V or 4-20mA). The range of the PROCESS VARIABLE is an integer value in the range of
6400–32000.

 Square Root of PV (Yes/No)

The Square Root of PV feature is used with differential pressure flow measurement devices, such as
an orifice or venturi tube, where the flow rate is proportional to the square root of the pressure drop
across the device. In this case, the PV input value represents the measured differential pressure so
flow must be derived through a square root calculation. Select YES only if the actual PV input signal
represents the square of the measured input.

 Loop Output Address (None, WY, V)

Specifies the memory address associated with the Loop Output. It is usually a WY address mapped
to an analog output channel or internal V-Memory address. The value is expected to be an integer in
the range of 0-32000, 6400-32000 (for 20% OFFSET) or -32000 to +32000 (for BIPOLAR signals)elect
NONE if you do not want the LOOP OUTPUT to be written to a PLC memory address. In this case, the
Loop Output value must be accessed via the SF variable LMN.

 Output is Bipolar (Yes/No)

Select YES when the LOOP OUTPUT is converted into a Bipolar analog signal, (i.e., -10-to-+10V).
When active, the range of the LOOP OUTPUT integer value is -32000 to +32000. It is invalid to set both
Bipolar and 20% OFFSET flags for the same analog signal.

324 CTI 2500 Series CPU Programming Reference Manual V1.33

 20% Offset on Output (Yes/No)

Select YES when the LOOP OUTPUT is converted into an analog signal with a 20% Offset for the
“zero” range position, (1-5V or 4-20mA). When active, the range of the LOOP OUTPUT integer value is
6400–32000. It is invalid to set both 20% Offset and BIPOLAR flags for the same analog signal.

 Ramp/Soak for SP (Yes/No)

When a Ramp/Soak profile has been programmed for this loop, setting this parameter to YES causes
the loop to execute the Ramp/Soak steps when the loop transitions from MANUAL to AUTO mode. The
configuration of a Ramp/Soak profile is described in Section 5.4.

 Monitor Absolute Alarms (Yes/No)

The selection of Monitor Low-Low/High-High and Monitor Low/High enable alarms generated by
comparing the PV to fixed values. Either pair of alarms may be used independently. Both pairs are
used when one pair (High/Low) provides a warning indication while the other pair (High-High/
Low-Low signals a critical condition.

 Absolute Alarm Limits (in Engr Units)

The values for the absolute alarm limits are entered when the corresponding alarm pair (Low/High)
or (Low-Low/High-High) is selected. These values are specified in Engineering Units as follows:

 The value for the High-High alarm must be less than or equal to the PV HIGH RANGE value.

 The value for the High alarm must be less than or equal to the High-High alarm,

 The value for the Low alarm must be less than or equal to the High alarm,

 The value for the Low-Low alarm must be less than or equal to the Low alarm and greater
than or equal to the PV LOW RANGE value.

 Remote SP (None, V, K, WX, WY, LMN)

The Remote Setpoint field specifies the memory location used by the loop to obtain the SETPOINT

value. A value of NONE indicates that there is no Remote Setpoint and that the SETPOINT must be
set via the Special Function variable LSP.

In order to use Remote Setpoint, the loop must be placed in CASCADE mode even if the loops are not
actually cascaded together. True CASCADE mode involves multiple loops where the OUTPUT of one
loop (LMN) is used as the SETPOINT for another. It is possible to simulate CASCADE mode by using any
writeable word memory location as Remote Setpoint rather than an actual LOOP OUTPUT. This allows
the SP to be controlled by RLL, SF programs, or manually via HMI. In this case, a loop in CASCADE
mode operates exactly like AUTO mode without being influenced by the operation of another loop.

The integer value of Remote Setpoint is always scaled for the normal unipolar range of 0-32,000.
The SETPOINT can also be accessed as Real number in engineering units according to the range
specified by PV LOW and PV HIGH limits.

Note:
An alternative to using Remote Setpoint in non-Cascade applications is to control

the Loop Setpoint via the SF Loop Setpoint variable (LSP).

CTI 2500 Series CPU Programming Reference Manual V1.33 325

 Clamp Setpoint Limits Low/High (in Engr Units)

Designates minimum and maximum limits allowed for LOOP SETPOINT. The values entered are
treated as engineering units and must be within limits specified for PV LOW and PV HIGH. An attempt
to force the SETPOINT outside these limits will result in the SP value being clamped to nearest limit.
For instance, with Setpoint Limits set to ‘10’ and ‘90’, a SP input of ‘5’ is changed to a value of
‘10’and a SP input of ‘95’ is changed to a value of ‘90’.

Setpoint Limits are enforced in MANUAL and AUTO modes but not in CASCADE mode. However, the
controller sets SETPOINT equal to Process Variable (SP=PV) to ensure a bumpless transfer from
MANUAL to AUTO mode even if PV is outside Setpoint Limits. The Setpoint Limits are then applied if
the SETPOINT is ever changed from that value.

Setpoint Clamping is disabled if both SP Low and SP High limits are set to the same value.

 Loop Gain

The Loop Gain parameter sets the PROPORTIONAL GAIN for the control loop and also acts as overall

GAIN multiplier (Kc). The Loop Gain entry may range from 0.0 to 100.0. An entry of 0 disables

PROPORTIONAL control.

A Loop Gain of 1.0 is Unity Gain where the PROPORTIONAL component of the LOOP OUTPUT is equal
to amount the LOOP ERROR (SP-PV). A larger value for Loop Gain typically results in faster response
since its PROPORTIONAL component increases as the ERROR increases, but it can lead to process
instability if it is excessively large. The Loop Gain also serves as multiplier for DERIVATIVE GAIN and
INTEGRAL GAIN as described in the following sections.

 Loop Reset (Reset Time in Minutes)

This value determines the INTEGRAL portion of the PID algorithm. The Reset parameter is expressed

as Reset Time in minutes and used to calculate the INTEGRAL GAIN (Ki) as Sample Rate / Reset

Time. Therefore INTEGRAL GAIN is the reciprocal of Reset Time and decreases as Reset Time gets
larger. Reset is used to improve response time and eliminate steady-state errors quicker. The trade-
off is this usually causes larger overshoot during ERROR correction. The contribution of the INTEGRAL
component is reflected in the BIAS term of the LOOP OUTPUT. Reset can be disabled by entering “0” or
leaving the entry blank.

 Rate (Derivative Time in Minutes)

Rate is the DERIVATIVE portion of the loop and is expressed as DERIVATIVE TIME in minutes.

DERIVATIVE GAIN (Kd) is calculated as DERIVATIVE TIME / SAMPLE RATE. The DERIVATIVE term slows the

rate of change of the LOOP OUTPUT and is most noticeable when the ERROR is small.. Rate is used to
reduce the amount of overshoot produced by the INTEGRAL component. However, it slows down
transient response and is highly sensitive to noise in PV and/or SP signals that can lead to process
instability when DERIVATIVE GAIN is sufficiently large. Rate can be disabled by entering “0” or leaving
the entry blank.

326 CTI 2500 Series CPU Programming Reference Manual V1.33

 Freeze Bias (Yes/No)

In Adjust Bias mode (when Freeze Bias = NO), the controller adjusts LOOP BIAS by the amount that
the calculated LOOP OUTPUT is out-of-range. Otherwise (Freeze Bias = YES), the controller holds
BIAS at last value when OUTPUT calculation is out-of-range.

For example, the previous loop calculation had LOOP BIAS = 0.59 and LOOP OUTPUT = 0.99, and new
loop calculation results in LOOP BIAS = 0.62 and LOOP OUTPUT = 1.08.

 In Adjust Bias mode, the BIAS is adjusted by the overage amount

 BIASNEW = 0.62 – 0.08 = 0.54

 In Freeze Bias mode, the BIAS is held at previous value

BIASNEW = BIASOLD = 0.59

Freeze Bias is usually selected only in special circumstances where an external action can affect a
process signal and generate an erroneous value over some time period. For example, the loop is
controlling temperature in a furnace. If the temperature (PV) sensor were located near a furnace door,
opening the door would produce a large ERROR and cause unwanted large change in the BIAS term.

 Derivative Gain Limiting (Yes/No)

Derivative Gain Limiting enables a filter to be used in the calculation of DERIVATIVE component of
the controller algorithm. This feature helps to reduce the sensitivity of the DERIVATIVE TERM to noise in
process signals that can cause erratic behavior of the control system. This is typically used when the
DERIVATIVE term exceeds 15-20 percent of the calculated LOOP OUTPUT.

 Limiting Coefficient

Specifies the value used as Derivative Gain Limiting Coefficient in calculation of the DERIVATIVE

GAIN LIMITING filter. This filter effectively limits the rate of change of PROCESS VARIABLE according to
the filter time constant as specified by the DERIVATIVE TIME (Td) and LIMITING COEFFICIENT (Kd) as
shown below:

The Limiting Coefficient is used only when DERIVATIVE GAIN LIMITING = YES.

 Alarm Deadband (in Engr Units)

Alarm Deadband sets the value used to prevent nuisance alarms caused by PV value ‘chattering’
near an alarm limit. If specified, it provides a “neutral zone” for all alarms except for RATE OF CHANGE
alarm. The Alarm Deadband delays the point at which an alarm condition is set and/or cleared. It is
normally set to a value in the range of 0.25% to 5% of span.

For example, PV RANGE of 0-100, PV LOW alarm = 20, and Deadband = 2. When PV drops from 21
to 20, PV LOW alarm is activated. The PV LOW alarm is not cleared until PV signal rises to 22.

YNEW = X ((PVNEW – PVPREV) + YPREV) Sample Time (Ts)

 Ts + (Td/Kd)

Derivative Term = Rate Gain (Kc*Td/Ts) X (YNEW – YPREV)

CTI 2500 Series CPU Programming Reference Manual V1.33 327

 Special Calculation On (SP, PV, Output, None)

The controller can perform any custom calculations by calling a SPECIAL FUNCTION PROGRAM during
the loop calculation. This field schedules the SF program to be called while the SP, PV, or Output
values are accessed. No Special Function Program is called if “NONE” is entered in this field.

 SP Used for manipulating SP and/or PV values
 Called in AUTO or CASCADE mode immediately before loop calculation (T2=2)

 PV Used for alarm monitoring and setting/changing of any loop parameter value
 Called in all modes every 2 seconds or SAMPLE RATE whichever is less.

 T2=3 when called for alarm monitoring (when SAMPLE RATE > 2 sec)

 T2=2 when called immediately before loop calculation

 Output Same as SP with additional call to SFP to set OUTPUT values after loop calculation
 Called in AUTO or CASCADE mode immediately after loop calculation (T2=5).

 None No Special Function Program is called

 Special Function

This field specifies the number of the Special Function Program that will be called from the loop.

 Lock Setpoint, Lock Auto/Man, Lock Cascade

These values set the corresponding bits in the LOOP C-FLAGS. It is the responsibility of the operator
interface or HMI program to check these flags before attempting to modify these parameters. The
controller does not enforce the lock.

 Error Operation (Error Squared, Error Deadband, None)

Specifies method used to calculate the LOOP ERROR term used in the control equation:

 Error Squared Computes the square of the ERROR before using it in the loop algorithm.
Since the ERROR is expressed as a percent, this makes the loop less
responsive to a specific ERROR amount. For example, an ERROR of 50%
would result in an ERROR TERM of 0.25 (0.5 X 0.5). Used primarily in PH
control applications.

 Error Deadband Used to implement fast response for large errors and ignore small errors.
The controller does not respond to ERROR values within the YELLOW

DEVIATION limit

 None Computes LOOP ERROR as ERR = SP – PV (Default)

328 CTI 2500 Series CPU Programming Reference Manual V1.33

 Reverse Acting (Yes/No)

This parameter selects the direction of controller response to LOOP ERROR.

 NO Selects Direct-Acting control. Direction of PV movement follows the LOOP

OUTPUT. Therefore, increasing the CONTROL OUTPUT causes the PV value to
increase.

 YES Selects Reverse-Acting control. Direction of PV movement is opposite of the LOOP

OUTPUT. Increasing the CONTROL OUTPUT causes the PV value to decrease.

 Monitor Deviation (Yes/No)

Select YES to enable alarm monitoring on DEVIATION LIMITS on the ERROR value calculated as SP-PV.
When selected both YELLOW DEVIATION and ORANGE DEVIATION alarms are enabled.

 Deviation Alarm Limits (in Engr Units)

The Yellow Deviation and Orange Deviation alarms activate when the ERROR (SP – PV) exceeds
the specified limits. The Yellow Deviation is considered the first level alarm, and the ORANGE

DEVIATION is considered the critical alarm. The values for both alarm limits are entered in Engineering
Units as follows:

 The value for the Orange Deviation alarm limit must be less than or equal to the PV RANGE

in Engineering Units ((PV HIGH RANGE – PV LOW RANGE.) and greater than or equal to the
Yellow Deviation limit.

 The value for the Yellow Deviation alarm limit must be greater than or equal to zero and less
than or equal to the Orange Deviation limit.

 Monitor Rate (Yes/No)

Select YES to enable alarm monitoring on PV RATE OF CHANGE.

 Rate of Change Alarm Limit (in Engr Units per Minute)

The Rate of Change alarm is activated when the PV input changes faster than the designated alarm
limit. The change in PV is calculated as the difference in two consecutive monitoring cycles. The Rate
of Change limit is entered in Engineering Units per Minute. For example, for a PV RANGE = 0-100, an
entry of 120 equates to an Rate of Change alarm limit of 2 units per second.

 Monitor Broken Xmit (Yes/No)

Select YES to enable Broken Transmitter alarm that is activated when the integer value of the PV
input signal is detected outside of the expected range as shown below:

 NO OFFSET: 0 – 32000

 20% OFFSET: 6400 – 32000

 BIPOLAR: -32000 to +32000

If DEADBAND is specified, that value is added to the limits that activate this alarm. For instance, the
Broken Transmitter alarm is set when a 20% OFFSET signal is read outside the range of 6400-32000
when no DEADBAND is used. However, a DEADBAND value of 5% expands the acceptable input range
by 1280 counts on both end of the scale (5120-33280).

CTI 2500 Series CPU Programming Reference Manual V1.33 329

6.4 Loop Configuration Flags (LCFH and LCFL)

The Loop Configuration Flags (C-FLAGS) are used to monitor and set the loop configuration
parameters. These flags are a “mirror” of the LOOP PARAMETER flags. The programmer is actually
setting these flags when the LOOP PARAMETERS are configured as described in the next section. Loop
C-Flags are accessed via two Special Function variables LCFH (most significant word) and LCFL.

Variable Bit Loop Function

LCFH

1 0 = 0% Offset for PV
1 = 20% Offset for PV (valid only if PV is unipolar. See LCFL bit 5)

2 1 = Enable square root of PV calculation

3 1 = Monitor High and Low alarms

4 1 = Monitor High-High and Low-Low alarms

5 1 = Monitor Yellow and Orange Deviation alarms

6 1 = Monitor Rate-of-Change alarm

7 1 = Monitor Broken Transmitter alarm

8 0 = Use PID Position algorithm
1 = Use PID Velocity algorithm

9 0 = Direct-Acting loop
1 = Reverse-Acting loop

10 1 = Use Error Squared calculation

11 1 = Use Error Deadband calculation

12 1 = Lock Auto-mode (not enforced by controller)

13 1 = Lock Cascade-mode (not enforced by controller)

14 1 = Lock Setpoint (not enforced by controller)

15 0 = Output scale 0% Offset
1 = Output scale 20% Offset (valid only for unipolar Output
 (See LCFL bit 4)

16 0 0 No Special Function Program called
1 0 Special Function Program called on PV

LCFL

1 0 1 Special Function Program called on SP
1 1 Special Function Program called on Output

2 1 = Freeze Bias when Output is out-of-range

3 1 = Ramp/Soak profile is configured

4 0 = Output is Unipolar
1 = Output is Bipolar

5 0 = PV is Unipolar
1 = PV is Bipolar

6 1 = Perform Derivative Gain Limiting

7 - 16 Contains SF Program number to be called (1-1023)

330 CTI 2500 Series CPU Programming Reference Manual V1.33

6.5 Loop Status Flags (V-Flags)

The Loop Status Flags (V-FLAGS) are used to set the LOOP MODE and monitor the status of the loop
operation. These flags can be accessed by SF Programs using the Special Function variable LVF or
RLL program when they are “mirrored” to a writeable Word (V or WY) address (V or WY) or
consecutive Bit (C or Y) addresses via LOOP CONFIGURATION.

Bit Description

1 Sets loop mode to Manual (when = 1)

2 Sets loop mode to Auto (when = 1)

3 Sets loop mode to Cascade (when = 1)

4 - 5 Reports loop mode

4 5
0 0 Manual mode
1 0 Auto mode
0 1 Cascade mode

6 Error is zero or positive (when = 0)
Error is negative (when = 1)

7 PV High-High alarm is active (when = 1)

8 PV High alarm is active (when = 1)

9 PV Low alarm is active (when = 1)

10 PV Low-Low alarm is active (when = 1)

11 Yellow Deviation alarm is active (when = 1)

12 Orange Deviation alarm is active (when = 1)

13 PV Rate of Change alarm is active (when = 1)

14 PV Broken Transmitter alarm is active (when = 1)

15 Loop is overrunning (when = 1)

16 Unused

CTI 2500 Series CPU Programming Reference Manual V1.33 331

332 CTI 2500 Series CPU Programming Reference Manual V1.33

6.6 Loop Alarm Acknowledgement Flags

The Loop Alarm Acknowledgement Flags allow you to monitor the loop alarm status and
acknowledge alarms when required. Access to these flags is provided via the Special Function
variable LACK. An alarm may be acknowledged by writing a ‘1’ to specific “unacknowledged” alarm
bits (bits 9–12).

For instance, when both Bit 2 and Bit 10 are ON indicating an active and unacknowledged RATE OF

CHANGE alarm, you can write a ‘1’ to Bit 10 to acknowledge that alarm. The controller then sets Bit 10
to zero to indicate the RATE OF CHANGE alarm is acknowledged.

Bit Alarm Condition

1 1 = PV is in Broken Transmitter alarm.

2 1 = PV is in Rate-of-Change alarm.

3 1 = PV is in High-High and Low-Low alarm.

4 1 = PV is in Orange Deviation alarm.

5 Unused

6 Unused

7 Unused

8 Unused

9 1 = Broken Transmitter alarm is unacknowledged

10 1 = Rate-of-Change alarm is unacknowledged.

11 1 = High-High or Low-Low alarm is unacknowledged.

12 1 = Orange Deviation alarm is unacknowledged

13 Unused

14 Unused

15 Unused

16 Unused

CTI 2500 Series CPU Programming Reference Manual V1.33 333

6.7 Ramp/Soak Operation

The Ramp/Soak feature allows the configuration of a profile table to automate a startup sequence of
a process by creating a set of rules to vary the LOOP SETPOINT. This is very useful in high temperature
processes such as metal fabrication, heat treating, and batch cooking.

The following illustration shows a simple Ramp/Soak profile.

The Ramp/Soak profile is made up of steps or time periods. Each step is entered as one of three
types:

 Ramp Moves the SETPOINT linearly to specified value at designated rate of change.

 Soak Holds the SETPOINT constant for designated time period.

 End Terminates the RAMP/SOAK operation

The Ramp step is programmed with 2 values; RAMP RATE and SETPOINT. The RAMP RATE is entered
in Engineering Units per minute and sets how fast the SETPOINT value is changed. The SETPOINT is
the final value we want the PROCESS VARIABLE to achieve.

The Soak step is specified by TIME (in minutes) to remain at the current value and DEADBAND. The
DEADBAND is specified in Engineering Units and sets the amount of variance that is permitted in
SETPOINT value. If the PV moves outside the DEADBAND limits, the SOAK timer stops until the PV
returns to an acceptable value.

Multiple RAMP/SOAK steps (up to a maximum of 254) may be entered in a single profile.

The END step terminates the operation and is required.

A Status Bit can be specified for each RAMP/SOAK step. This bit is turned ON while the step is active
and is reset when the operation leaves that step. This allows the Ramp/Soak operation to be easily
monitored by the RLL program or HMI device.

If programmed, the Ramp/Soak operation starts automatically when the loop transitions from MANUAL
to AUTO mode. The controller starts execution at step 1 and continues until it encounters an END step.
On completion, the loop remains in AUTO mode and SETPOINT is held at the last specified value.

Time

S
e
tp

o
in

t

Ramp Soak Profile

Ramp

Soak

Ramp

End

334 CTI 2500 Series CPU Programming Reference Manual V1.33

Operation can also be manually controlled via Special Function variables as described below:

 LRSN Loop Ramp Soak Number

 The LRSN holds the current (active) step number for its corresponding
RAMP/SOAK profile. This variable can be accessed by a Special Function Program or
HMI device.

 The value contained in the LRSN is zero-relative (i.e., 0 = Step 1).

 LRSF Loop Ramp Soak Flags

 Set of 16 bits containing operational and status data for the corresponding profile.
 Bits 1-3 can be written and used for MANUAL control of the Ramp/Soak

operation.
 Bits 4-16 provide status monitoring.

Bit Ramp/Soak Function

1 Restart at first step. Toggle bit OFF/ON/OFF to restart.
Restart occurs on trailing edge (ON-to-OFF transition)

2 1 = Hold at current step

3 1 = Jog to next step. Toggle bit OFF-ON to move to next step.
Jog occurs on leading edge (OFF-to-ON transition)

4 1 = Ramp/Soak operation has completed

5 1 = Wait
Set during Soak step when PV is outside Deadband limits

6 1 = Hold in progress (request from bit 2)

7 – 8 Unused (always 0)

9 - 16 Active Step Number
Value is zero relative (0=Step 1, 1=Step2, etc.)

The Ramp/Soak operation may be programmed for all standard PID Loops (numbered 1-128).
Higher numbered loops must execute as “Fast Loops” triggered by the RLL program and do not
support this feature.

CTI 2500 Series CPU Programming Reference Manual V1.33 335

CHAPTER 7 MEMORY CONFIGURATION

7.1 Overview

The 2500 Series controller provides an area of battery backed memory which can be used to store
the User program. The amount of memory available varies with the controller model. See the CTI
2500 Installation and Operation Guide for model specific features.

This memory is then partitioned into areas used by different parts of the user program. To allow you
to customize the controller to meet different applications, you can allocate the amount of memory
reserved for each user program element using your programming software. Following is an example
using 505 WorkShop by FasTrak Softworks.

336 CTI 2500 Series CPU Programming Reference Manual V1.33

7.2 Memory Configuration

This section describes the PLC memory types available for user configuration.

 Ladder (L) Memory

Ladder Memory is used to hold the RLL program. Each ladder instruction consumes one or more 16
bit words of RLL memory. For each 1KB of RLL source memory configured, the controller allocates
an additional 2KB for compiled run-time code.

 Variable (V) Memory

Variable (V) Memory is an array of 16 bit words that used to store user defined data. One V-Memory
location can contain an array of bits, an unsigned integer, or a signed integer. Two consecutive V
memory locations can be used for long integers and/or floating point numbers. V-Memory is allocated
in increments of 1KB. Each V-Memory location consumes 2 bytes.

 Constant (K) Memory

Constant (K) Memory is similar to V memory, except that it cannot be written by the user program. K-
Memory is typically used to hold initialization data and other data that is unchangeable. One K-
Memory location can contain an array of bits, an unsigned integer, or a signed integer. Two
consecutive K memory locations can be used for long integers and floating point numbers. K-Memory
is allocated in increments of 1KB. Each K-Memory location consumes 2 bytes.

 Special (S) Memory

Special (S) Memory is used to hold instructions for Special Function Programs and Subroutines,
Analog Loop parameters, and Analog Alarm parameters. S-Memory is allocated in 1KB increments.

 Timer/Counter (TC) Memory

Timer/Counter memory is used to hold the Timer/Counter Current (TCC) and Timer/Counter Preset
(TCP) data. Each Timer and/or Counter instruction (TMR, TMRF, DCAT, MCAT, CTR, UDC) used in
the program must have a unique instruction number. The user allocates the number of Timers and/or
Counters available in 1K increments, and each group of 1K instructions consumes 5KB of System
Memory.

 Drum Memory (D) Memory

Drum Memory is used to store the Drum data including the Drum Step Preset (DSP), Drum Count
Preset (DCP), Drum Step Current (DSC), and Drum Count Current (DCC) values. Each Drum
instruction (DRUM, EDRUM, MDRMD, MDRMW) used in the program must have a unique instruction
number. The user allocates the number of Drums available in increments of 64. Each allocated group
of 64 Drums uses 3KB of System Memory.

 Shift Register (SR) Memory

Shift Register Memory is used by the Shift Register instructions. Each Shift Register instruction
(SHRB or SHRW) used in the program must have a unique instruction number. The user allocates
the number of Shift Register available in 1K increments, and the system uses one byte for each
allocated instruction to save the previous state of the instruction input.

CTI 2500 Series CPU Programming Reference Manual V1.33 337

 Table (T) Memory

Table Memory is used by the Table Move instructions. Each Table Move instruction (MWTT or
MWFT) used in the program must have a unique instruction number. The user allocates the number
of Table Move instructions available in 1K increments, and 2 bytes of System Memory are used for
each allocated instruction to maintain the count of move operations completed since the last
instruction reset.

 One Shot (OS) Memory

One Shot Memory is used by the group of One-Shot instructions for storage of the previous input
state. Each One-Shot instruction (OS, DSET, TSET) used in the program must have a unique
instruction number. The user allocates the number of One-Shot instructions available in 1K
increments, and each allocated instruction uses 1 byte of System Memory.

Note:

Compiled Special (CS) Memory and User (U) Memory that were user-configurable memory
types for the SIMATIC® 505 controllers are not used in the CTI 2500 Series CPU.

When using 505 WorkShop, the software automatically removes these memory types from the
PLC Configuration when the ‘PLC Type’ is changed to a CTI 2500 Series PLC model. However,

these memory allocations must be manually removed from the PLC Memory Configuration
before using TISOFT to download a program to a CTI 2500 Series PLC

338 CTI 2500 Series CPU Programming Reference Manual V1.33

CTI 2500 Series CPU Programming Reference Manual V1.33 339

CHAPTER 8 SCAN CONFIGURATION

8.1 Overview

The CTI 2500 Series controller executes a scan that contains a discrete portion and an analog portion
as described in the CTI 2500 Installation and Operation Guide. The discrete portion consists of
Normal I/O, RLL and Special Function I/O tasks. These tasks are always executed to completion
every scan.

The analog portion consists of the following tasks: Analog Loops, Analog Alarms, Special Function
Programs, Special Function Subroutines, Communications, and Diagnostics. These tasks are
executed in time slices. The time slice constrains how long the task can execute in a single PLC
scan. Except for the Diagnostic task, the time slice values for the analog scan are user configurable.
This design allows you to minimize the overall scan time while allowing ample processing time to
complete tasks that can execute over several scans.

Each time slice specifies the maximum time (in msec) that a task will execute during one scan. If a
task completes all scheduled operations before the specified time interval, the controller immediately
moves to the next task. Therefore, a large time slice does not affect the PLC scan if no operations are
scheduled. The time slice values are set a default values when a new user program is created. These
values may be changed using your programming software. Following is an example using 505
Workshop by FasTrak Softworks.

340 CTI 2500 Series CPU Programming Reference Manual V1.33

8.2 Time Slice Configuration

You can configure the following time periods in the analog scan:

 Analog Loop Time Slice

The Analog Loop task executes in this time slice. This time slice value represents the maximum
amount of time that the task can run in a single scan. If you wish to minimize scan time, you can set
the time slice slightly larger than the value that will cause the loops to begin overrunning.

 Analog Alarm Time Slice

The Analog Alarm task executes in this time slice. This time slice value represents the maximum
amount of time that the task can run in a single scan. If you wish to minimize scan time, you can set
the time slice slightly larger than the value that will cause the alarms to begin overrunning.

 Cyclic Special Function Program Time Slice

When you create a Special Function Program, you can designate that the program is executed on a
cyclical basis and specify the cyclic time interval. This time slice value represents the maximum
amount of time that Cyclic Special Function Programs can run in a single scan. If you wish to
minimize scan time, you can set the time slice slightly larger than the value that will cause Cyclic
Special Function Programs to begin overrunning.

 Priority Special Function Program Time Slice

When you create a Special Function Program that is called from the RLL program, you can designate
whether the program is executed in the Priority time slice or the Normal time slice. This time slice
value represents the maximum amount of time that Special Function programs designated as
Priority can run in a single scan.

 Normal Special Function Program Time Slice

When you create a Special Function Program that is called from relay ladder logic, you can designate
whether the program is executed in the Priority time slice or the Normal time slice. This time slice
value represents the maximum amount of time that Special Function programs designated as
Normal can run in a single scan.

 Ladder Special Function Subroutine Time Slice

Special Function Subroutines called from relay ladder logic (RLL) execute in this time slice. This
time slice value represents the maximum amount of time that Special Function Subroutines called
from RLL can run in a single scan.

 Normal Communications Time Slice

Requests that may require several scans to service, called DEFERRED REQUESTS, are executed in this
time slice. In general, these requests consist of programming functions such as BLOCK MOVES and
SEARCHES. When the controller is in RUN mode, this value represents the maximum amount of scan
time that will be allocated to executing this request. If DEFERRED REQUESTS are serviced too slowly,
you can speed them up by increasing this time slice (at the expense of impacting scan time). If the
impact on scan time is more important than the execution time of these requests, you can reduce the
time slice value.

CTI 2500 Series CPU Programming Reference Manual V1.33 341

 Priority Communications Time Slice

Requests originating from the serial ports that can be serviced in a single scan time are executed in
this time slice. In general, these are requests to read and write data elements. Depending on the
nature of the requests, you may be able to improve data access throughput by increasing this time
slice. Alternately, you may be able to reduce the impact of these requests by reducing the time slice.

 Ladder SF Subroutine 0 Time Slice

Ladder Special Function Subroutine 0 is a special type of Special Function Subroutine called from
relay ladder logic. See Section 0 for additional information. This time slice represents the maximum
amount of time that these subroutines can execute in a single scan.

 Network Communications Time Slice

Requests originating from the local Ethernet port that can be serviced in a single scan time are
executed in this time slice. In general, these are requests to Rad and Write data elements. You may
be able to improve data access throughput by increasing the time slice value. If HMI devices are
connected to the local Ethernet port, we recommend that this value be set to at least 5 msec.

8.3 Facilities for Analog Scan Optimization

 Status Word 162

Status Word 162 contains bits flag bits that designate when certain tasks are overrunning (not
completing execution before is time to run again) or when SF queues are full.

Bit Function

3 Indicates that Loops are overrunning

4 Indicates that Alarms are overrunning

5 Indicates that Cyclic SF programs are overrunning

6 Indicates that the Normal SF program queue is full (always = 0)

7 Indicates that the Priority SF program queue is Full (always = 0)

8 Indicates that the Cyclic SF queue is Full

If Cyclic tasks are Overrunning (as indicated in Bits 3-5) you can either increase the SAMPLE TIME to
call the task less often or increase the corresponding time slice to allow the controller more execution
time for that task during each scan.

The 2500 Series CPUs have unlimited queues for NORMAL and PRIORITY SF programs so the bits
indicating Queue Full (Bits 6-7) will always be zero in the CTI controllers.

The Cyclic SF Queue is limited to 32 active programs (identical to the SIMATIC® 505 controllers).
The Cyclic SF Queue Full flag (Bit 8) indicates that the RLL program attempted to run more than 32
CYCLIC SF programs at the same time. After 32 CYCLIC SF programs are active, all other Cyclic SF
programs will not execute until one or more active programs are terminated.

342 CTI 2500 Series CPU Programming Reference Manual V1.33

 Program Elapsed Times

For each analog loop, analog alarm, special function program, and special function subroutine, the
controller maintains a peak elapsed time. This measures the time from which the program element is
placed in the execution queue until it has completed execution. These statistics may be accessed via
the following mnemonics.

LPET Contains the PEAK ELAPSED TIME for PID loops executed in the ANALOG LOOP time slice.
LPET1 contains the time for Loop 1; LPET2 contains the time for Loop 2; etc. Note
LPET times are not valid for loops executed using the RLL PID instruction, since these
loops are executed in the RLL portion of the scan.

APET Contains the PEAK ELAPSED TIME for Analog Alarms. APET1 contains the time for

Alarm 1; APET2 contains the time for Alarm 2; etc.

PPET Contains the PEAK ELAPSED TIME for Special Function programs. PPET1 contains the
time for SFPGM 1; PPET2 contains the time for SFPGM 2; etc. PPET times for SF
programs executed IN-LINE with RLL are not available, since they are executed in the
RLL portion of the scan. The PPET values for SF programs called only by LOOPS or
ALARMS are set to 65535 to provide indication that the SFPGM has executed.

SPET Contains the PEAK ELAPSED TIME for Special Function Subroutines. SPET1 contains the

time for SFSUB 1; SPET2 contains the time for SFSUB 2; etc. Note that SPET times
are valid only for SF Subroutines called by RLL that are not designated for IN-LINE
execution.

The PEAK ELAPSED TIME shows the total time interval between when the task starts to execute until it
is complete. If the task cannot finish before the time slice expires, the task is suspended until the next
PLC Scan. The PEAK ELAPSED TIME includes the time required to complete the PLC Scan as well as
the task itself.

Using the PEAK ELAPSED TIME values, you can determine how long it is taking to execute a specific
task on the controller. For Cyclic tasks, it shows how close the tasks are to overrunning (not
completing execution before it is time to run again) and helps you to adjust the time slice values
accordingly.

CTI 2500 Series CPU Programming Reference Manual V1.33 343

APPENDIX A – PLC STATUS WORDS

The CTI 2500 controller maintains a collection of Status Words that may be used by user programs or
operator interface equipment to monitor the status of the controller subsystems. The following table
describes the Status Words.

Word Description

STW 1 Misc. Status and Non-Fatal Errors

Bit 1-3 Unused

Bit 4 Password has been entered

Bit 5 Password is currently disabled

Bit 6 User Program Error Flag (RLL). See STW 200 for error code.

Bit 7 RLL Subroutine Stack Overflow

Bit 8 Time of Day Clock Failure

Bit 9 Unused

Bit 10 SF Module Communications Failure

Bit 11 Previous RLL Instruction Failed

Bit 12 I/O Module Failure

Bit 13 Communications Port Failure

Bit 14 Scan Overrun

Bit 15 Battery Low

Bit 16 Source RLL Checksum Error

STW 2 Base Controller Status
The most significant bit (Bit 1) corresponds to Base 15 and the least significant
bit (Bit 16) corresponds to the local base (0) as shown below.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

15 14 13 12 11 10 9 8 7 6 5 4 3 3 1 0

Corresponding bit is set to 1 if :

 The base poll flag is not set (polling disabled), or

 The base poll flag is set and the base is not present (not online) or is a
failed state (unable to log-in).

344 CTI 2500 Series CPU Programming Reference Manual V1.33

STW 3 -
STW 9

Status of DP channel slaves.
Set to 0 if slave is online, configured, and enabled. The least significant bit (16)
of Word 3 corresponds to Slave #1. See the table below.

Word 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

4 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

5 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

6 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

7 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65

8 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81

9 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97

STW 10 Dynamic Scan Time
Scan time of the previous scan.

STW 11:
STW 26

I/O Module Status
STW 11 represents the local base
STW 12 – 26 represent remote bases 1 – 15.

For all words, the most significant bit (1) represents slot 16 and the least
significant bit (16) represents slot 1 as shown below.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

A bit is set to 0 if the module status is good. It is set to 1 if any of the following
conditions is true:

 Installed module does not match configuration for the slot

 The slot is configured but no module is installed in the slot.

 The slot is not configured but a module is installed.

 Module fail is asserted and module fail bit is set

STW 27:
STW 138

Profibus RBC Module Status.
Provides module status for modules in a 505 base using a Profibus RBC.
Status Word 27 corresponds to Profibus RBC slave # 1. Subsequent words
correspond to Slave # 2, Slave # 3, etc.
For all words, the most significant bit represents slot 16 and the least significant
bit (16) represents slot 1 as shown below.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

A bit is set to 0 if the module status is good. It is set to 1 if any of the following
conditions is true:

 Installed module does not match configuration for the slot

 The slot is configured but no module is installed in the slot.

 The slot is not configured but a module is installed.

STW 139 Number of Forced Bits.
Current count of forced X, Y, and C.

STW 140 Number of Forced Words
Current count of forced WX and WY.

CTI 2500 Series CPU Programming Reference Manual V1.33 345

STW 141 BCD Time of Day – Word 1

Bit 1 – 4 Year – Tens

Bit 5 – 8 Year – Units

Bit 9 – 12 Month – Tens

Bit 13 - 16 Month - Units

STW 142 BCD Time of Day – Word 2

Bit 1 – 4 Day - Tens

Bit 5 – 8 Day - Units

Bit 9 – 12 Hour - Tens

Bit 13 - 16 Hour - Units

STW 143 BCD Time of Day – Word 3

Bit 1 – 4 Minute - Tens

Bit 5 – 8 Minute - Units

Bit 9 – 12 Second - Tens

Bit 13 - 16 Second - Units

STW 144 BCD Time of Day – Word 4

Bit 1 – 4 Second - Tenths

Bit 5 – 8 Second - Hundredths

Bit 9 – 12 Unused – Set to 0

Bit 13 - 16 Day of Week

STW 145 Remote I/O Channel Receive Errors
Cumulative count of all receive errors on the remote I/O channel

STW 146 Remote I/O Channel Timeout Errors
Cumulative counts of all timeout errors on the remote I/O channel

Note:

A properly installed system should detect no more than one error associated
with the Remote I/O channel every 20,000 PLC scans. This includes Receive
Errors reported in STW145 and Timeout Errors reported in STW146. This
frequency of error rate can occur in some system environments even when all
equipment is installed correctly.

A single error is immediately corrected by a “retry” message and does not
cause the PLC to log off the Remote Base or lose control of the field I/O.
Excessive errors or Remote Base log offs may indicate wiring and/or noise
problems.

STW 147 Number of DP related errors
Counts all DP errors on the Profibus Channel. This includes timeouts, etc.

STW 148 Number of token-related errors
Counts the token related errors on the Profibus channel.

STW 149:
STW 161

Not used

STW 162 Analog Non-Fatal Errors

Bit 1 Unused

Bit 2 Unused

Bit 3 Loops are overrunning

Bit 4 Analog Alarms are overrunning

Bit 5 Cyclic SF programs are overrunning

Bit 6 Normal SF Queue is Full

346 CTI 2500 Series CPU Programming Reference Manual V1.33

Bit 7 Priority SF Queue is Full

Bit 8 Cyclic SF Queue is Full

Bit 9 Error occurred during loop calculation

Bit 10 Error occurred during analog alarm calculation

Bit 11 A control block is disabled

Bit 12 Attempt to execute undefined SFPGM or SFSUB

Bit 13 Attempt to execute restricted SFPGM from RLL

Bit 14 - 15 Unused

Bit 16 Unused

STW 163 RLL Subroutine Stack Overflow
Contains the number of the RLL subroutine that caused a stack overflow

STW 164
STW 165

Source RLL Checksum
Contains checksum as a 32 bit unsigned integer

STW 166
STW 167

Compiled RLL Checksum
Contains checksum as a 32 bit unsigned integer

STW 168 Dual RBC Status (Remote I/O)
Status of 0 indicates that the dual RBCs are present and good. 1 indicates a
bad RBC or a single RBC. The most significant bit (1) represents base 15 and
the least significant bit (16) represents the local base (0).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

15 14 13 12 11 10 9 8 7 6 5 4 3 3 1 0

STW 169:
STW 175

Unused

STW 176 Redundant Power Supply Status
Status of 0 indicates that the base is present, dual supplies are present, and
they are both good. Status of 1 indicates that a power supply is bad or only a
single power supply is present. The most significant bit (1) represents base 15
and the least significant bit (16) represents the local base (0).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

15 14 13 12 11 10 9 8 7 6 5 4 3 3 1 0

STW 177:
STW 183

Unused

STW 184 Module Mismatch or Unclaimed MODFAIL signal

Bit 1 Set to 1 if there is a module mismatch on any base

Bit 2-4 Unused

Bit 5 – 8 Number of base with mismatch

Bit 9 - 16 Unused

STW 185:
STW 190

Unused

STW 191 Serial Port Print Status

Bit 1 Print Busy – The port is currently sending characters from the print buffer

Bit 2 Configuration Error - The serial port is not configured for print output. The print
jumper is missing or is in the wrong position.

Bit 3 Print Buffer Overflow – The buffer is full, additional characters have been
discarded

Bit 4 Hardware Error – Serial port UART failure

Bit 5 - 16 Unused

CTI 2500 Series CPU Programming Reference Manual V1.33 347

STW 192 Discrete Execution Scan Time

Indicates the time spent in the last discrete scan cycle.

STW 193:
STW 199

Unused

STW 200 User Program Error Cause
The following error codes are associated with bit 6 of STW1.

Code Description

0 No Error
1 Unused
2 Unused
3 Unused
4 Subroutine nesting level exceeded
5 Table Overflow
6 Attempt to call a non-existent subroutine
7 Unused
8 SF Program has not been compiled or does not exist
9 SF Program is currently disabled

10 SF Program type is Restricted or Cyclic
11 SF Program or Subroutine is being edited
12 Unused
13 PID Loop is not configured
14 PID Loop is disabled

STW 201 User Program(RLL) First Scan Flags

Bit 1 First Scan After Compile

Bit 2 First scan after Program Mode

Bit 3 First scan after Edit Mode

Bit 4 First scan after Auto Recompile

Bit 5 – 8 Unused

Bit 9 First Scan following a Battery Bad Power Up restart

Bit 10 First Scan following a Battery Good Power Up restart (or power-on start)

Bit 11 First Scan following a Complete Restart

Bit 12 First Scan following a Partial Restart

Bit 13 – 16 Unused

STW 202:
STW 208

Unused

STW 210 Remote I/O Base Poll Enable Flags
The bit corresponding to the base is set to 1 when the base is enabled for
polling.
The most significant bit (1) represents base 15 and the least significant bit (16)
corresponds to the local base (base 0).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

15 14 13 12 11 10 9 8 7 6 5 4 3 3 1 0

348 CTI 2500 Series CPU Programming Reference Manual V1.33

STW 211:
STW 217

Profibus Poll Enable Flags
The corresponding bit is set to 1 when the slave is defined and enabled for
polling. The least significant bit (16) of STW 211 corresponds to Slave #1. See
table below.

Word 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

211 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

212 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

213 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

214 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

215 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65

216 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81

217 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97

STW 218 Unused

STW 219 RLL Task Overrun
The bit corresponding to the RLL task is set if the RLL task does not complete
in the user specified cycle time. The most significant bit (bit 1) corresponds to
RLL Task 1.

STW 220:
STW 222

Unused

STW 223
STW 224

Binary Time of Day
Contains the relative millisecond of the current day expressed as a 32 bit
unsigned integer.

STW 225 Binary Relative Day
Contains the relative day, with January 1, 1984 being day 0.

STW 226 Time of Day Status

Bit 1 1 = Current time is prior to time reported in the last Task 1 RLL scan

Bit 2 – 9 Reserved

Bit 10 1 = Time is Valid (has been Set)

Bit 11 Unused

Bit 12 - 13 Time Resolution
00 = Time Resolution is .001 second
01 = Time Resolution is .01 second
02 = Time Resolution is 0.1 second
03 = Time Resolution is 1 second

Bit 14 Reserved

Bit 15 Reserved

Bit 16 Reserved

STW 227:
STW 228

Unused

STW 229:
STW 230

Unused

CTI 2500 Series CPU Programming Reference Manual V1.33 349

STW 231 Profibus I/O Status

Bit 1 1 = DP in Operate State – inputs available, outputs driven

Bit 2 1 = DP in Clear State – Inputs available

Bit 3 1 = Error; Unable to download configuration to Profibus interface

Bit 4 1 = Error: Unable to retrieve slave diagnostic data from Profibus interface

Bit 5 1 = Error: DP bus error

Bit 6 1 = One of more DP slaves expected to be in data exchange mode are not
operational (added in 2500 Series PLC Firmware V6.11).

Bit 7 – 15 Unused.

STW 232:
STW 238

Profibus I/O Slave Diagnostic Status
The corresponding bit will be set to 1 if the slave signals a diagnostic that has
not been read by a RSD RLL instruction.
The least significant bit (16) of STW 232 corresponds to Slave #`1. See table
below.

Word 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

232 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

233 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

234 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

235 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

236 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65

237 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81

238 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97

STW 239:
STW 240

Source SF Program/SF Subroutine Checksum
Calculated on each transition to RUN mode and each time an edit is entered for
either a SFPGM or SFSUB.

STW 241:
STW 242

Compiled SF Program/SF Subroutine Checksum
Calculated on each transition to RUN mode and each time a SFPGM or SFSUB
is compiled due to edit.

STW 243 Reserved

STW 244 Additional Controller Status Flags

Bit 1 Controller Mode (0 = Program Mode, 1 = Run mode)

Bit 2 Scan Type (0 = Variable, 1 = Fixed)

Bit 3 User Program Source (0 = RAM, 1 = Flash)

Bit 4 Ethernet Port Link Status (1= Connected)

Bit 5 TCP/IP Network Status (1 = Operational)

Bit 6 Duplicate IP Address Status (1 = Duplicate detected)

Bit 7 - 16 Reserved

STW 245 Additional Controller Error Status

Bit 1 Fatal Error Flag (1 = Fatal Error Present).

Bit 2 Reserved

Bit 3 Remote I/O Base Failure (1 = One or more bases are not communicating)
A base that is configured and enabled cannot be logged in.

Bit 4 - 16 Reserved

STW 246 Fatal Error Code
Contains the fatal error code when a fatal error is present

STW 247-
STW 257

CTI Support Diagnostics
Subject to change

350 CTI 2500 Series CPU Programming Reference Manual V1.33

STW 258-
STW 259

Product Serial Number
Contains the serial number of the controller
The Serial Number must be read as a 32-bit Long Integer starting at STW 258

STW260 Firmware Major Release Number

STW 261 Firmware Minor Release Number

STW 262 Profibus Last Scan Interval
Time (in msec) for the Profibus subsystem to complete the latest I/O cycle.

STW 263 Maximum Profibus Synchronous Mode Delay
Longest time (in msec) that the PLC Scan Control task has delayed starting a
PLC scan due to wait for the Profibus subsystem to complete two complete I/O
cycles during the PLC scan. This value is reported only when Profibus
Synchronous Mode is selected.

STW 264 CTI Support Diagnostic

STW 265 PLC Scan Overflow Count
Number of times the PLC scan exceeded specified “Fixed Scan Time”. This
value is reported only when the PLC Scan mode is “Fixed”.

STW 266 CTI Support Diagnostic

STW 267 Data Cache Connection Status
Provides status for CTI Advanced Function (AF) modules configured for
communications with PLC via Data Cache interface. The bit corresponding to
each instance is selected in the Data Cache configuration for that AF module.
When more than one Data Cache connection is used with this PLC, the bit
assigned by each AF module must be unique.

Bit 1 - 8 Data Cache Connection Status for specified instance:
ON = Connection Good – Data Transfer active
OFF = Not Connected (unused or Connection Error)

Bit 9 - 15 Reserved

Bit 16 Duplicate Assignment Flag – more than one Data Cache client has specified
the same bit (1-8) for reporting connection status

STW 268-
STW 269

Unused

STW 270-
STW 271

Compiled RLL size in bytes
Stored as a 32-bit Long Integer starting at STW 270

STW 272-
STW 273

Compiled SFPGM/SFSUB size in bytes
Stored as a 32-bit Long Integer starting at STW 272

STW 274-
STW 298

Reserved

STW 299 Peak Scan Time
Maximum PLC scan time (in msec)

STW 300 Normal I/O Last Scan
Time (in msec) to complete Local and Remote I/O cycle during latest PLC scan

STW 301 Normal I/O Peak Scan
Maximum time (in msec) for Local and Remote I/O cycle during one PLC scan

STW 302 Profibus Last Cycle
Time (in msec) to complete latest Profibus cycle

STW 303 Profibus Peak Cycle
Maximum time (in msec) for completion of one Profibus cycle

STW 304 Main RLL Execution Last Scan
Time (in msec) to execute Main RLL instructions during latest PLC scan

CTI 2500 Series CPU Programming Reference Manual V1.33 351

STW 305 Main RLL Execution Peak

Maximum time (in msec) to execute Main RLL instructions during one PLC scan

STW 306 Special Function I/O Last Scan
Time (in msec) to complete the SF I/O cycle during latest PLC scan

STW 307 Special Function I/O Peak
Maximum time (in msec) to complete the SF I/O cycle during one PLC scan

STW 308 Analog PID Loop Execution Last Scan
Time (in msec) used to process Analog Loops during latest PLC scan

STW 309 Analog PID Loop Peak
Maximum time (in msec) spent process Analog Loops during one PLC scan

STW 310 Analog Alarm Execution Last Scan
Time (in msec) used to process Analog Alarms during latest PLC scan

STW 311 Analog Alarm Execution Peak
Maximum time (in msec) spent processing Analog Alarms during one PLC scan

STW 312 Cyclic SFPGM Execution Last Scan
Time (in msec) used to execute Cyclic SFPGM during latest PLC scan

STW 313 Cyclic SFPGM Execution Peak
Maximum time (in msec) used to execute Cyclic SFPGM during one PLC scan

STW 314 Priority SFPGM Execution Last Scan
Time (in msec) used to execute Priority SFPGM during latest PLC scan

STW 315 Priority SFPGM Execution Peak
Maximum time (in msec) used to execute Cyclic SFPGM during one PLC scan

STW 316 Normal SFPGM Execution Last Scan
Time (in msec) used to execute Normal SFPGM during latest PLC scan

STW 317 Normal SFPGM Execution Peak
Maximum time (in msec) used to execute Normal SFPGM during one PLC scan

STW 318 Ladder SFSUB Execution Last Scan
Time (in msec) to execute SFSUB0 instructions during latest PLC scan.
RLL SFSUB instructions marked for “in-line” execution are not included.

STW 319 Ladder SFSUB Execution Peak
Maximum time (in msec) to execute RLL SFSUB instructions during one PLC
scan. RLL SFSUB instructions marked for “in-line” execution are not included.

STW 320 Ladder SFSUB0 Execution Last Scan
Time (in msec) to execute RLL SFSUB0 instructions during latest PLC scan.
RLL SFSUB0 instructions marked for “in-line” execution are not included.

STW 321 Ladder SFSUB0 Execution Peak
Maximum time (in msec) to execute RLL SFSUB0 instructions during one PLC
scan. RLL SFSUB0 instructions marked for “in-line” execution are not included.

STW 322 Normal Communication Processing Last Scan
Time (in msec) used during latest PLC scan to process “Deferred Requests”.

STW 323 Normal Communication Processing Peak
Maximum time (in msec) used during one PLC scan to process “Deferred
Requests”.

STW 324 Priority Communication Processing Last Scan
Time (in msec) used during latest PLC scan to process communications thru
the front panel serial port and/or USB port.

STW 325 Priority Communication Processing Peak
Maximum time (in msec) used during one PLC scan to process communications
thru the front panel serial port and/or USB port.

352 CTI 2500 Series CPU Programming Reference Manual V1.33

STW 326 Network Communication Processing Last Scan

Time (in msec) used during latest PLC scan to process communications thru
the front panel Ethernet port.

STW 327 Network Communication Processing Peak
Maximum time (in msec) used during one PLC scan to process communications
thru the front panel Ethernet port.

STW 328 Cyclic RLL Last Execution
Time (in msec) to execute latest Cyclic RLL task

STW 329 Total Cyclic RLL Execution Last Scan
Time (in msec) spent executing Cyclic RLL instructions during latest PLC scan

STW 330 Cyclic RLL Execution Peak
Maximum time (in msec) spent executing Cyclic RLL instructions during one
PLC scan

STW 331 Unused

STW 332 RLL Compile Time
Time (in msec) used for compile and storage of RLL program during last
transition to RUN mode.

STW 333 Profibus Stack Start Time Peak
Maximum time (in msec) required for Profibus processor to indicate run status
after reset.

STW 334 Profibus Bus Parameters Download Time Peak
Maximum time (in msec) required to download all Bus Parameters to Profibus
processor

STW 335 Profibus Slave Parameters Download Time Peak
Maximum time (in msec) required to download all Slave Parameters to Profibus
processor

STW 336-
STW 399

Unused

STW 400-
STW 410

CTI Support Diagnostics

STW 411-
STW 454

Unused

STW 455-
STW 469

Remote Base Receive Errors
Contains the number of times that the controller encountered an error reading
the response message from the remote base.

STW 455 corresponds to remote base 1. STW 456 – STW 469 correspond to
remote bases 2 – 15.

STW 470 Unused

STW 471-
STW 485

Abnormal Logoff Count – Remote Base 1 - 15
Contains the number of times that the controller stopped communicating with
the remote base due to communications errors or response timeouts.

STW 471 corresponds to remote base 1.
STW 472 – STW 485 correspond to remote bases 2 – 15.

STW 486 Unused

CTI 2500 Series CPU Programming Reference Manual V1.33 353

STW 487-
STW 501

Timeout Count – Remote Base 1 – 15
Contains the number of times that the base failed to respond to a request from
the controller within the specified time.

STW 487 corresponds to remote base 1.
STW 488 – STW 501 correspond to remote bases 2 – 15.

CTI 2500 Series CPU Programming Reference Manual V1.33 355

APPENDIX B – LOOP AND ALARM FLAGS

This Appendix includes list of the flag registers used to monitor and control the Analog Loops and
Alarms. See Chapters 5-6 for a detailed description of these flags.

Loop V-Flags (LVF)

Bit Description

1 Sets loop mode to Manual (when = 1)

2 Sets loop mode to Auto (when = 1)

3 Sets loop mode to Cascade (when = 1)

4 - 5 Reports loop mode

4 5
0 0 Manual mode
1 0 Auto mode
0 1 Cascade mode

6 Error is zero or positive (when = 0)
Error is negative (when = 1)

7 PV High-High alarm is active (when = 1)

8 PV High alarm is active (when = 1)

9 PV Low alarm is active (when = 1)

10 PV Low-Low alarm is active (when = 1)

11 Yellow Deviation alarm is active (when = 1)

12 Orange Deviation alarm is active (when = 1)

13 PV Rate of Change alarm is active (when = 1)

14 PV Broken Transmitter alarm is active (when = 1)

15 Loop is overrunning (when = 1)

16 Unused

356 CTI 2500 Series CPU Programming Reference Manual V1.33

Loop Configuration Flags (LCFH and LCFL)

Variable Bit Loop Function

LCFH

1 0 = 0% Offset for PV
1 = 20% Offset for PV (valid only if PV is unipolar. See LCFL bit 5)

2 1 = Enable square root of PV calculation

3 1 = Monitor High and Low alarms

4 1 = Monitor High-High and Low-Low alarms

5 1 = Monitor Yellow and Orange Deviation alarms

6 1 = Monitor Rate-of-Change alarm

7 1 = Monitor Broken Transmitter alarm

8 0 = Use PID Position algorithm
1 = Use PID Velocity algorithm

9 0 = Direct-Acting loop
1 = Reverse-Acting loop

10 1 = Use Error Squared calculation

11 1 = Use Error Deadband calculation

12 1 = Lock Auto-mode (not enforced by controller)

13 1 = Lock Cascade-mode (not enforced by controller)

14 1 = Lock Setpoint (not enforced by controller)

15 0 = Output scale 0% Offset
1 = Output scale 20% Offset (valid only for unipolar Output.
 (See LCFL bit 4)

16 0 0 No Special Function Program called
1 0 Special Function Program called on PV

LCFL

1 0 1 Special Function Program called on SP
1 1 Special Function Program called on Output

2 1 = Freeze Bias when Output is out-of-range

3 1 = Ramp/Soak profile is configured

4 0 = Output is Unipolar
1 = Output is Bipolar

5 0 = PV is Unipolar
1 = PV is Bipolar

6 1 = Perform Derivative Gain Limiting

7-16 Contains SF Program number to be called (1-1023)

CTI 2500 Series CPU Programming Reference Manual V1.33 357

Alarm V-Flags (AVF)

Alarm Configuration Flags (ACFH and ACFL)

Bit Description

1 When set, enables alarm

2 When set, disables alarm

3 When set, High-High alarm is active

4 When set, High alarm is active

5 When set, Low alarm is active

6 When set, Low-Low alarm is active

7 When set, Yellow Deviation alarm is active

8 When set, Orange Deviation alarm is active

9 When set, Rate of Change alarm is active

10 When set, Broken Transmitter alarm is active

11 When set, alarm is overrunning

12 When set, alarm is enabled
This bit is not used if the V flag address is C or Y.

13-16 Not used

Variable Bit Description

ACFH

1
0 = 0% Offset for PV
1 = 20% Offset for PV (valid only if PV is Unipolar. See ACFL Bit 5)

2 1 = Enable square root of PV calculation

3 1 = Monitor High and Low alarms

4 1 = Monitor High-High and Low-Low alarms

5 1 = Monitor Yellow and Orange Deviation alarms

6 1 = Monitor Rate-of-Change alarm

7 1 = Monitor Broken Transmitter alarm

8
0 = Use Local Setpoint
1 = Use Remote Setpoint

9-16 Unused

ACFL

1–4 Unused

5
0 = PV is Unipolar
1 = PV is Bipolar

6 Unused

7-16 Contains number of SF Program to be called

358 CTI 2500 Series CPU Programming Reference Manual V1.33

Alarm Acknowledgement Flags (LACK and AACK)

Bit Alarm Condition

1 1 = PV is in Broken Transmitter alarm

2 1 = PV is in Rate-of-Change alarm

3 1 = PV is in High-High or Low-Low alarm

4 1 = PV is in Orange Deviation alarm

5 Unused

6 Unused

7 Unused

8 Unused

9 1 = Broken Transmitter alarm is unacknowledged

10 1 = Rate-of-Change alarm is unacknowledged

11 1 = High-High or Low-Low alarm is unacknowledged

12 1 = Orange Deviation alarm is unacknowledged

13 Unused

14 Unused

15 Unused

16 Unused

CTI 2500 Series CPU Programming Reference Manual V1.33 359

LIMITED PRODUCT WARRANTY

1. Warranty. Control Technology Inc. ("CTI") warrants that this CTI Industrial Product (the "Product")
shall be free from defects in material and workmanship for a period of one (1) year from the date of
purchase from CTI or from an authorized CTI Industrial Distributor, as the case may be. Repaired or
replacement CTI products provided under this warranty are similarly warranted for a period of 6
months from the date of shipment to the customer or the remainder of the original warranty term,
whichever is longer. This Product and any repaired or replacement products will be manufactured
from new and/or serviceable used parts which are equal to new in the Product. This warranty is
limited to the initial purchaser of the Product from CTI or from an authorized CTI Industrial Distributor
and may not be transferred or assigned.

2. Remedies. Remedies under this warranty shall be limited, at CTI's option, to the replacement or
repair of this Product, or the parts thereof, only after shipment by the customer at the customer's
expense to a designated CTI service location along with proof of purchase date and an associated
serial number. Repair parts and replacement products furnished under this warranty will be on an
exchange basis and all exchanged parts or products become the property of CTI. Should any product
or part returned to CTI hereunder be found by CTI to be without defect, CTI will return such product or
part to the customer. The foregoing will be the exclusive remedies for any breach of warranty or
breach of contract arising therefrom.

3. General. This warranty is only available if (a) the customer provides CTI with written notice of a
warranty claim within the warranty period set forth above in Section 1 and (b) CTI's examination of the
Product or the parts thereof discloses that any alleged defect has not been caused by a failure to
provide a suitable environment as specified in the CTI Standard Environmental Specification and
applicable Product specifications, or damage caused by accident, disaster, acts of God, neglect,
abuse, misuse, transportation, alterations, attachments, accessories, supplies, non-CTI parts, non-
CTI repairs or activities, or to any damage whose proximate cause was utilities or utility-like services,
or faulty installation or maintenance done by someone other than CTI.

4. Product Improvement. CTI reserves the right to make changes to the Product in order to improve
reliability, function or design in the pursuit of providing the best possible products.

5. Exclusive Warranty. THE WARRANTIES SET FORTH HEREIN ARE CUSTOMER'S EXCLUSIVE
WARRANTIES. CTI HEREBY DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.
WITHOUT LIMITING THE FOREGOING, CTI SPECIFICALLY DISCLAIMS THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT, COURSE OF DEALING AND USAGE OF TRADE.

6. Disclaimer and Limitation of Liability. TO THE FULLEST EXTENT PERMITTED BY APPLICABLE
LAW, CTI WILL NOT BE LIABLE FOR ANY BUSINESS INTERRUPTION OR LOSS OF PROFIT,
REVENUE, MATERIALS, ANTICIPATED SAVINGS, DATA, CONTRACT, GOODWILL OR THE LIKE
(WHETHER DIRECT OR INDIRECT IN NATURE) OR FOR ANY OTHER FORM OF INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND. CTI'S MAXIMUM CUMULATIVE
LIABILITY RELATIVE TO ALL OTHER CLAIMS AND LIABILITIES, INCLUDING OBLIGATIONS
UNDER ANY INDEMNITY, WHETHER OR NOT INSURED, WILL NOT EXCEED THE COST OF
THE PRODUCT(S) GIVING RISE TO THE CLAIM OR LIABILITY. CTI DISCLAIMS ALL LIABILITY
RELATIVE TO GRATUITOUS INFORMATION OR ASSISTANCE PROVIDED BY, BUT NOT

360 CTI 2500 Series CPU Programming Reference Manual V1.33

REQUIRED OF CTI HEREUNDER. ANY ACTION AGAINST CTI MUST BE BROUGHT WITHIN
EIGHTEEN (18) MONTHS AFTER THE CAUSE OF ACTION ACCRUES. THESE DISCLAIMERS
AND LIMITATIONS OF LIABILITY WILL APPLY REGARDLESS OF ANY OTHER CONTRARY
PROVISION HEREOF AND REGARDLESS OF THE FORM OF ACTION, WHETHER IN
CONTRACT, TORT (INCLUDING NEGLIGENCE AND STRICT LIABILITY) OR OTHERWISE, AND
FURTHER WILL EXTEND TO THE BENEFIT OF CTI'S VENDORS, APPOINTED DISTRIBUTORS
AND OTHER AUTHORIZED RESELLERS AS THIRD-PARTY BENEFICIARIES. EACH PROVISION
HEREOF WHICH PROVIDES FOR A LIMITATION OF LIABILITY, DISCLAIMER OF WARRANTY
OR CONDITION OR EXCLUSION OF DAMAGES IS SEVERABLE AND INDEPENDENT OF ANY
OTHER PROVISION AND IS TO BE ENFORCED AS SUCH.

7. Adequate Remedy. The customer is limited to the remedies specified herein and shall have no
others for a nonconformity in the Product. The customer agrees that these remedies provide the
customer with a minimum adequate remedy and are its exclusive remedies, whether based on
contract, warranty, tort (including negligence), strict liability, indemnity, or any other legal theory, and
whether arising out of warranties, representations, instructions, installations, or non-conformities from
any cause. The customer further acknowledges that the purchase price of the Product reflects these
warranty terms and remedies.

8. Force Majeure. CTI will not be liable for any loss, damage or delay arising out of its failure (or that
of its subcontractors) to perform hereunder due to causes beyond its reasonable control, including
without limitation, acts of God, acts or omissions of the customer, acts of civil or military authority,
fires, strikes, floods, epidemics, quarantine restrictions, war, riots, acts of terrorism, delays in
transportation, or transportation embargoes. In the event of such delay, CTI's performance date(s) will
be extended for such length of time as may be reasonably necessary to compensate for the delay.

9. Governing Law. The laws of the State of Tennessee shall govern the validity, interpretation and
enforcement of this warranty, without regard to its conflicts of law principles. The application of the
United Nations Convention on Contracts for the International Sale of Goods shall be excluded.

CTI 2500 Series CPU Programming Reference Manual V1.33 361

REPAIR POLICY

In the event that the Product should fail during or after the warranty period, a Return Material
Authorization (RMA) number can be requested orally or in writing from CTI main offices. Whether or
not this equipment is in warranty, providing a Purchase Order number to CTI when requesting the
RMA number will aid in expediting the repair process. The RMA number that is issued and your
Purchase Order number should be referenced on the returning equipment's shipping documentation.
Additionally, if the product is under warranty, proof of purchase date and serial number must
accompany the returned equipment. The current repair and/or exchange rates can be obtained by
contacting CTI's main office at 1-800-537-8398.

When returning any module to CTI, follow proper static control precautions. Keep the module away
from polyethylene products, polystyrene products and all other static producing materials. Packing
the module in its original conductive bag is the preferred way to control static problems during
shipment. Failure to observe static control precautions may void the warranty. For additional
information on static control precautions, contact CTI at 1-800-537-8398.

	CHAPTER 1 OVERVIEW
	1.1 Introduction
	1.2 Programming Overview
	1.2.1 Relay Ladder Programming
	1.2.2 Special Function Programs and Subroutines
	1.2.3 Analog Alarms
	1.2.4 Analog Loops

	1.3 Controller Data Types
	1.4 Data Representation

	CHAPTER 2 Online Program Editing
	2.1 Overview
	2.2 Preparation for Online Edits (in PROGRAM Mode)
	2.2.1 Use 505 WorkShop® PLC Programming Suite (V4.90 or later) if possible
	2.2.2 Set PLC Memory Configuration to Allow Online Edits
	2.2.3 Set PLC Scan Time Configuration for Online Edit Processing

	2.3 Online Edits to PLC I/O Configurations
	2.3.1 Local/Remote I/O
	2.3.2 Profibus I/O

	2.4 Performing RLL Online Edits
	2.4.1 General Operation
	2.4.2 Add an RLL Network
	2.4.3 Delete RLL Network(s)
	2.4.4 Modify an existing RLL Network
	2.4.5 Potential Sources of Run-Time Edit Compile Errors
	2.4.6 Additional Considerations

	2.5 Performing SF Program Online Edits
	2.5.1 Organization of SFPGM/SFSUB Memory
	2.5.2 Differences between CTI 2500 Series and SIMATIC 505 SF Programs
	2.5.3 Online Edit Operation for SF Programs
	2.5.4 Recommendations for SF Program Online Edits

	2.6 Online Edits to Alarm and Loop Blocks

	CHAPTER 3 RELAY LADDER LOGIC
	3.1 Overview
	3.2 RLL Instruction Summary
	3.2.1 Relay Instructions
	3.2.2 Electro-mechanical Operations (Timer / Counter / Drum)
	3.2.3 Relational and Comparison Operations
	3.2.4 Bit Operations
	3.2.5 Math Operations
	3.2.6 Logic Operations
	3.2.7 Word / Table Move Operations
	3.2.8 Program Control Operations
	3.2.9 Special Operations

	3.3 RLL Memory Access
	3.4 Relay Instructions
	3.4.1 Open Contact
	3.4.2 Closed Contact
	3.4.3 Logical NOT Contact
	3.4.4 One-Shot Contact
	3.4.5 Normal Coil
	3.4.6 NOT Coil
	3.4.7 Set Coil
	3.4.8 Reset Coil
	3.4.9 Immediate Open Contact
	3.4.10 Immediate Closed Contact
	3.4.11 Immediate Coil
	3.4.12 Immediate NOT Coil
	3.4.13 Immediate Set Coil
	3.4.14 Immediate Reset Coil

	3.5 Electro-mechanical Instructions (Timer/Counter/Drum)
	3.5.1 Counter (CTR)
	3.5.2 Up-Down Counter (UDC)
	3.5.3 On-Delay Timer (TMR / TMRF)
	3.5.4 Discrete Control Alarm Timer (DCAT)
	3.5.5 Motor Control Alarm Timer (MCAT)
	3.5.6 On-Delay Coil (ONDC)
	3.5.7 Off-Delay Coil (OFFDC)
	3.5.8 DRUM (Time-Based)
	3.5.9 Time/Event DRUM (EDRUM)
	3.5.10 Maskable Event Drum with Discrete Outputs (MDRMD)
	3.5.11 Maskable Event Drum with Word Output (MDRMW)
	3.5.12 Mega Event DRUM (MEDRM)

	3.6 Relational / Comparison Operations
	3.6.1 Compare (CMP)
	3.6.2 Equal (EQU)
	3.6.3 Greater or Equal (GEQ)
	3.6.4 Greater (GTR)
	3.6.5 Less or Equal (LEQ)
	3.6.6 Less (LESS)
	3.6.7 Not Equal (NEQ)
	3.6.8 Indexed Matrix Compare (IMC)
	3.6.9 Scan Matrix Compare (SMC)
	3.6.10 Search Table For Equal (STFE)
	3.6.11 Search Table For Not Equal (STFN)

	3.7 Bit Operations
	3.7.1 Bit Clear (BITC)
	3.7.2 Bit Set (BITS)
	3.7.3 Bit Pick (BITP)
	3.7.4 Bit Shift Register (SHRB)
	3.7.5 Word Shift Register (SHRW)
	3.7.6 Word Rotate (WROT)

	3.8 Math / Logic Operations
	3.8.1 Absolute Value (ABSV)
	3.8.2 Addition (ADD)
	3.8.3 Subtraction (SUB)
	3.8.4 Multiplication (MUL)
	3.8.5 Division (DIV)
	3.8.6 Square Root (SQRT)
	3.8.7 Binary to BCD Conversion (CBD)
	3.8.8 BCD to Binary Conversion (CDB)

	3.9 Logic Operations
	3.9.1 Word AND (WAND)
	3.9.2 Word OR (WOR)
	3.9.3 Word Exclusive-OR (WXOR)
	3.9.4 Table AND (TAND)
	3.9.5 Table OR (TOR)
	3.9.6 Table Exclusive-OR (TXOR)
	3.9.7 Table Complement (TCPL)
	3.9.8 Word-to-Table AND (WTTA)
	3.9.9 Word-to-Table OR (WTTO)
	3.9.10 Word-to-Table Exclusive-OR (WTTX)

	3.10 Word / Table Move Operations
	3.10.1 Move Word (MOVW)
	3.10.2 Move with Index (MWI)
	3.10.3 Move Word From Table (MWFT)
	3.10.4 Move Word To Table (MWTT)
	3.10.5 Move Image Register to Word (MIRW)
	3.10.6 Move Word to Image Register (MWIR)
	3.10.7 Move Image Register From Table (MIRFT)
	3.10.8 Move Image Register To Table (MIRTT)
	3.10.9 Move Element (MOVE)
	3.10.10 Table To Word (TTOW)
	3.10.11 Word To Table (WTOT)

	3.11 Program Control Operations
	3.11.1 Unconditional END (END)
	3.11.2 Conditional END (ENDC)
	3.11.3 Jump (JMP) / Jump End (JMPE)
	3.11.4 Skip (SKP) / Label (LBL)
	3.11.5 Master Control Relay (MCR) / MCR End (MCRE)
	3.11.6 Go To Subroutine (GTS)
	3.11.7 Parameterized Go To Subroutine (PGTS)
	3.11.8 Parameterized Go To Subroutine – Zero (PGTSZ)
	3.11.9 Start of Subroutine (SBR)
	3.11.10 Return from Subroutine (RET)
	3.11.11 PID Fast Loop (PID)
	3.11.12 Call SF Program (SFPGM)
	3.11.13 Call SF Subroutine (SFSUB)
	3.11.14 Start RLL Task (TASK)
	3.11.15 Special Operations
	3.11.16 Load Data Constant (LDC)
	3.11.17 Load Address (LDA)
	3.11.18 Time Set (TSET)
	3.11.19 Time Compare (TCMP)
	3.11.20 Date Set (DSET)
	3.11.21 Date Compare (DCMP)
	3.11.22 Immediate I/O Read/Write (IORW)
	3.11.23 Read Slave Diagnostic (RSD)
	3.11.24 Text Box (TEXT)
	3.11.25 No Operation (NOP)

	CHAPTER 4 SF PROGRAMS AND SUBROUTINES
	4.1 Overview
	4.2 SF Program/Subroutine Execution
	4.2.1 SF Programs
	4.2.1.1 Normal / Priority SF Programs
	In-Line Execution
	Deferred Execution

	4.2.1.2 Cyclic SF Programs
	4.2.1.3 Restricted SF Programs
	SF Programs Called on Setpoint
	SF Programs Called on Process Variable
	SF Programs Called on Loop Output

	4.2.2 SF Subroutines
	4.2.2.1 SF Subroutines Called from RLL
	4.2.2.2 SF Subroutines Called from SF Programs/Subroutines
	4.2.2.3 SF Subroutine Password Protection

	4.2.3 Editing of SF Programs during Run Mode

	4.3 Special Function Error Reporting and Response
	4.4 Special Function Memory Usage
	4.4.1 SF Program Size
	4.4.2 SF Local Memory
	4.4.3 Memory Array Indexing

	4.5 Special Function Instructions
	4.5.1 SF Instruction Data Fields
	4.5.2 Comment (*)
	4.5.3 BCD-to-Binary Conversion (BCDBIN)
	4.5.4 Binary-to-BCD Conversion (BINBCD)
	4.5.5 Call SF Subroutine (CALL)
	4.5.6 Correlated Data Table (CDT)
	4.5.7 Exit on Error (EXIT)
	4.5.8 Fall Through Shift Register (FTSR-IN / FTSR-OUT)
	4.5.9 Conditional Looping - FOR / NEXT
	4.5.10 Unconditional Branching - GOTO / LABEL
	4.5.11 Conditional Branching - IF (IIF) / ELSE / ENDIF
	4.5.12 Integer Math Operations (IMATH)
	4.5.13 Lead/Lag Compensation (LEAD/LAG)
	4.5.14 Real Number Math Operations (MATH)
	4.5.15 Pack Data (PACK)
	4.5.16 Pack Analog Alarm Data (PACKAA)
	4.5.17 Pack Loop Data (PACKLOOP)
	4.5.18 Pack Ramp/Soak Data (PACKRS)
	4.5.19 Pet Scan Watchdog (PETWD)
	4.5.20 Print Message (PRINT)
	4.5.21 Return from SF Program / Subroutine (RETURN)
	4.5.22 Scale Analog Input to Engineering Units (SCALE)
	4.5.23 Sequential Data Table (SDT)
	4.5.24 Conditional Branching – SWITCH / CASE / ENDSWITCH
	4.5.25 Synchronous Shift Register (SSR)
	4.5.26 Scale Engineering Units to Analog Output (UNSCALE)
	4.5.27 Conditional Looping - WHILE / ENDWHILE

	4.6 SF Program/Subroutine Data Variables
	4.7 SF Program/Subroutine Error Codes

	CHAPTER 5 ANALOG ALARMS
	5.1 Overview
	5.2 Alarm Parameters
	5.2.1 Alarm Title
	5.2.2 Alarm V-Flag Address
	5.2.3 Sample Rate
	5.2.4 Process Variable Address (V, WX, WY, None)
	5.2.5 PV Range Low/High (in Engr Units)
	5.2.6 PV is Bipolar (Yes/No)
	5.2.7 20% Offset on PV (Yes/No)
	5.2.8 Square Root of PV (Yes/No)
	5.2.9 Monitor Absolute Alarms (Yes/No)
	5.2.10 Absolute Alarm Limits (in Engr Units)
	5.2.11 Monitor Remote Setpoint (Yes/No)
	5.2.12 Remote Setpoint (V, K, WX, WY, None)
	5.2.13 Clamp Setpoint Low/High (in Engr Units)
	5.2.14 Alarm Deadband (in Engr Units)
	5.2.15 Special Function
	5.2.16 Deviation Alarms (Yes/No)
	5.2.17 Rate of Change Alarm Limit (in Engr Units per Minute)
	5.2.18 Broken Transmitter Alarm (Yes/No)

	5.3 Alarm Configuration Flags (ACFH and ACFL)
	5.4 Alarm Status Flags (AVF)
	5.5 Alarm Acknowledgement Flags (AACK)

	CHAPTER 6 ANALOG (PID) LOOPS
	6.1 Overview
	6.2 Loop Modes of Operation
	6.3 Loop Parameters
	6.3.1 Loop Title
	6.3.2 PID Algorithm (Position/Velocity)
	6.3.3 Loop V-Flag Address (None, C, Y, V, WY)
	6.3.4 Sample Rate (in Seconds)
	6.3.5 PV Address (None, V, WX, WY)
	6.3.6 PV Range (Low/High)
	6.3.7 PV Bipolar (Yes/No)
	6.3.8 20% Offset on PV (Yes/No)
	6.3.9 Square Root of PV (Yes/No)
	6.3.10 Loop Output Address (None, WY, V)
	6.3.11 Output is Bipolar (Yes/No)
	6.3.12 20% Offset on Output (Yes/No)
	6.3.13 Ramp/Soak for SP (Yes/No)
	6.3.14 Monitor Absolute Alarms (Yes/No)
	6.3.15 Absolute Alarm Limits (in Engr Units)
	6.3.16 Remote SP (None, V, K, WX, WY, LMN)
	6.3.17 Clamp Setpoint Limits Low/High (in Engr Units)
	6.3.18 Loop Gain
	6.3.19 Loop Reset (Reset Time in Minutes)
	6.3.20 Rate (Derivative Time in Minutes)
	6.3.21 Freeze Bias (Yes/No)
	6.3.22 Derivative Gain Limiting (Yes/No)
	6.3.23 Limiting Coefficient
	6.3.24 Alarm Deadband (in Engr Units)
	6.3.25 Special Calculation On (SP, PV, Output, None)
	6.3.26 Special Function
	6.3.27 Lock Setpoint, Lock Auto/Man, Lock Cascade
	6.3.28 Error Operation (Error Squared, Error Deadband, None)
	6.3.29 Reverse Acting (Yes/No)
	6.3.30 Monitor Deviation (Yes/No)
	6.3.31 Deviation Alarm Limits (in Engr Units)
	6.3.32 Monitor Rate (Yes/No)
	6.3.33 Rate of Change Alarm Limit (in Engr Units per Minute)
	6.3.34 Monitor Broken Xmit (Yes/No)

	6.4 Loop Configuration Flags (LCFH and LCFL)
	6.5 Loop Status Flags (V-Flags)
	6.6 Loop Alarm Acknowledgement Flags
	6.7 Ramp/Soak Operation

	CHAPTER 7 MEMORY CONFIGURATION
	7.1 Overview
	7.2 Memory Configuration
	7.2.1 Ladder (L) Memory
	7.2.2 Variable (V) Memory
	7.2.3 Constant (K) Memory
	7.2.4 Special (S) Memory
	7.2.5 Timer/Counter (TC) Memory
	7.2.6 Drum Memory (D) Memory
	7.2.7 Shift Register (SR) Memory
	7.2.8 Table (T) Memory
	7.2.9 One Shot (OS) Memory

	CHAPTER 8 SCAN CONFIGURATION
	8.1 Overview
	8.2 Time Slice Configuration
	8.2.1 Analog Loop Time Slice
	8.2.2 Analog Alarm Time Slice
	8.2.3 Cyclic Special Function Program Time Slice
	8.2.4 Priority Special Function Program Time Slice
	8.2.5 Normal Special Function Program Time Slice
	8.2.6 Ladder Special Function Subroutine Time Slice
	8.2.7 Normal Communications Time Slice
	8.2.8 Priority Communications Time Slice
	8.2.9 Ladder SF Subroutine 0 Time Slice
	8.2.10 Network Communications Time Slice

	8.3 Facilities for Analog Scan Optimization
	8.3.1 Status Word 162
	8.3.2 Program Elapsed Times

	APPENDIX A – PLC STATUS WORDS
	APPENDIX B – LOOP AND ALARM FLAGS
	Loop V-Flags (LVF)
	Loop Configuration Flags (LCFH and LCFL)
	Alarm V-Flags (AVF)
	Alarm Configuration Flags (ACFH and ACFL)
	Alarm Acknowledgement Flags (LACK and AACK)

	LIMITED PRODUCT WARRANTY
	REPAIR POLICY

